UNITED STATES SECURITIES AND EXCHANGE COMMISSION

Washington, D.C. 20549

FORM 8-K

CURRENT REPORT Pursuant to Section 13 or 15(d) of the Securities Exchange Act of 1934

Date of Report (Date of Earliest Event Reported): May 26, 2022

NURIX THERAPEUTICS, INC.

(Exact Name of Registrant as Specified in its Charter)

Delaware (State or Other Jurisdiction of Incorporation or Organization) 001-39398 (Commission File Number) 27-0838048 (IRS Employer Identification No.)

1700 Owens Street, Suite 205 San Francisco, California (Address of Principal Executive Offices)

94158 (Zip Code)

(415) 660-5320 (Registrant's Telephone Number, Including Area Code)

N/A (Former Name or Former Address, if Changed Since Last Report)

Check the appropriate box below if the Form 8-K filing is intended to simultaneously satisfy the filing obligation of the registrant under any of the following provisions:

□ Written communications pursuant to Rule 425 under the Securities Act (17 CFR 230.425)

□ Soliciting material pursuant to Rule 14a-12 under the Exchange Act (17 CFR 240.14a-12)

Derecommencement communications pursuant to Rule 14d-2(b) under the Exchange Act (17 CFR 240.14d-2(b))

Dere-commencement communications pursuant to Rule 13e-4(c) under the Exchange Act (17 CFR 240.13e-4(c))

Securities registered pursuant to Section 12(b) of the Act:

Title of each class	Trading symbol(s)	Name of each exchange on which registered
Common Stock, \$0.001 par value per share	NRIX	Nasdaq Global Market

Indicate by check mark whether the registrant is an emerging growth company as defined in Rule 405 of the Securities Act of 1933 (§230.405 of this chapter) or Rule 12b-2 of the Securities Exchange Act of 1934 (§240.12b-2 of this chapter).

Emerging growth company $\ \square$

If an emerging growth company, indicate by check mark if the registrant has elected not to use the extended transition period for complying with any new or revised financial accounting standards provided pursuant to Section 13(a) of the Exchange Act. \Box

Item 8.01 Other Events.

As previously announced, on May 26, 2022, Nurix Therapeutics, Inc. (the "Company") will provide an update on the Company's four clinical programs, DELigase discovery platform, and future development plans at the Company's research and development day ("R&D Day"). A copy of the Company's presentation material for the R&D Day is attached as Exhibit 99.1 hereto and is incorporated herein by reference. Also on May 26, 2022, the Company issued the press release attached as Exhibit 99.2 hereto, which is incorporated herein by reference.

Item 9.01 Financial Statements and Exhibits.

(d) Exhibits

The following exhibits are filed herewith and this list is intended to constitute the exhibit index:

- 99.1 <u>Nurix Therapeutics, Inc. presentation dated May 26, 2022.</u>
- 99.2 <u>Nurix Therapeutics, Inc. press release dated May 26, 2022.</u>
- 104 Cover Page Interactive Data File (embedded within the Inline XBRL document).

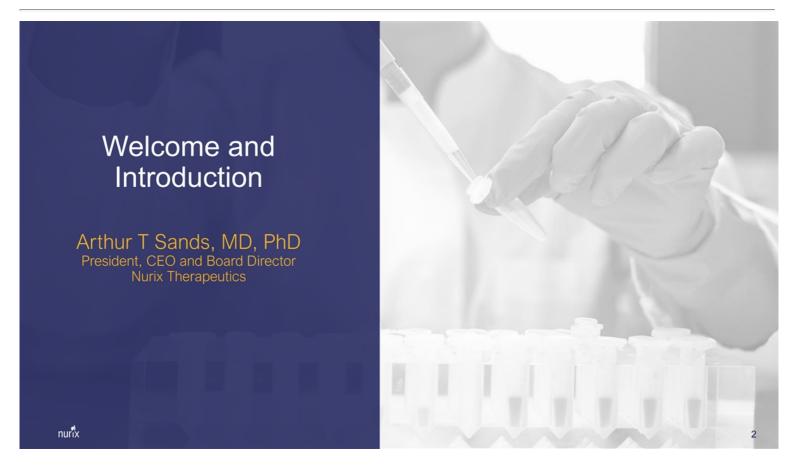
SIGNATURES

Pursuant to the requirements of the Securities Exchange Act of 1934, as amended, the Registrant has duly caused this report to be signed on its behalf by the undersigned hereunto duly authorized.

NURIX THERAPEUTICS, INC.

Date: May 26, 2022

By: /s/ Christine Ring Christine Ring, Ph.D., J.D. General Counsel



Leader in Targeted Protein Modulation

Nurix Therapeutics

Blazing a New Path in Medicine

R&D Day New York, NY May 26, 2022

Important Notice and Disclaimers

This presentation contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. When or if used in this presentation, the words "anticipate," "believe," "could," "estimate," "expect," "intend," "may," "outlook," "plan," "predict," "should," "will," and similar expressions and their variants, as they relate to Nurix Therapeutics, Inc. ("Nurix", the "Company," "we," "us" or "our"), may identify forward-looking statements. All statements that reflect Nurix's expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements regarding our future financial or business plans, performance, plans, prospects and strategies; future conditions, trends, and other financial and business matters; our current and prospective drug candidates; the planned timing and conduct of the clinical trial programs for our drug candidates; the planned timing for the provision of clinical updates and initial findings from our clinical studies; the potential advantages of our DELigase TM platform and drug candidates; the extent to which our scientific approach and DELigase TM platform may potentially address a broad range of diseases; the extent animal model data predicts human efficacy; and the timing and success of the development and commercialization of our current and anticipated drug candidates. Forward-looking statements reflect Nurix's current beliefs, expectations, and assumptions. Although Nurix believes the expectations and assumptions reflected in such forward-looking statements are reasonable, Nurix can give no assurance that they will prove to be correct. Forward-looking statements are not guarantees of future performance and are subject to risks, uncertainties and changes in circumstances that are difficult to predict, which could cause Nurix's actual activities and results to differ materially from those expressed in any forward-looking statement. Such risks and uncertainties include, but are not limited to: (i) risks and uncertainties related to Nurix's ability to advance its drug candidates, obtain regulatory approval of and ultimately commercialize its drug candidates; (ii) the timing and results of clinical trials and preclinical studies; (iii) Nurix's ability to fund development activities and achieve development goals; (iv) the impact of the COVID-19 pandemic on Nurix's business, clinical trials, financial condition, liquidity and results of operations; (v) Nurix's ability to protect intellectual property and (vi) other risks and uncertainties described under the heading "Risk Factors" in Nurix's Quarterly Report on Form 10-Q for the fiscal quarter ended February 28, 2022, and other SEC filings. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. The statements in this presentation speak only as of the date of this presentation, even if subsequently made available by Nurix on its website or otherwise. Nurix disclaims any intention or obligation to update publicly any forward-looking statements, whether in response to new information, future events, or otherwise, except as required by applicable law.

Certain information contained in this presentation relates to or is based on studies, publications, surveys and other data obtained from third-party sources and the Company's own internal estimates and research. While the Company believes these third-party sources to be reliable as of the date of this presentation, it has not independently verified, and makes no representation as to the adequacy, fairness, accuracy or completeness of, any information obtained from third-party sources. In addition, all of the market data included in this presentation involves a number of assumptions and limitations, and there can be no guarantee as to the accuracy or reliability of such assumptions. Finally, while we believe our own internal estimates and research are reliable, such estimates and research have not been verified by any independent source.

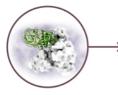
nurix

Cancer Connects Us All

602,350 Deaths From Cancer in 2020 in the United States

Nurix is committed to building a patient-focused, science-driven oncology company powered by our leadership position in Targeted Protein Modulation

Cancer Connects Us All


602,350 Deaths From Cancer in 2020 in the United States

How can targeted protein modulation drugs make a difference, how are they differentiated?

Simply stated, our drugs are designed to work when other drugs do not...an important place to start

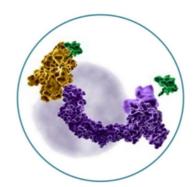
The War on Cancer Has a New Weapon

Nurix is the Pioneer and Leader in Targeted Protein Modulation

Small Molecule Inhibitors

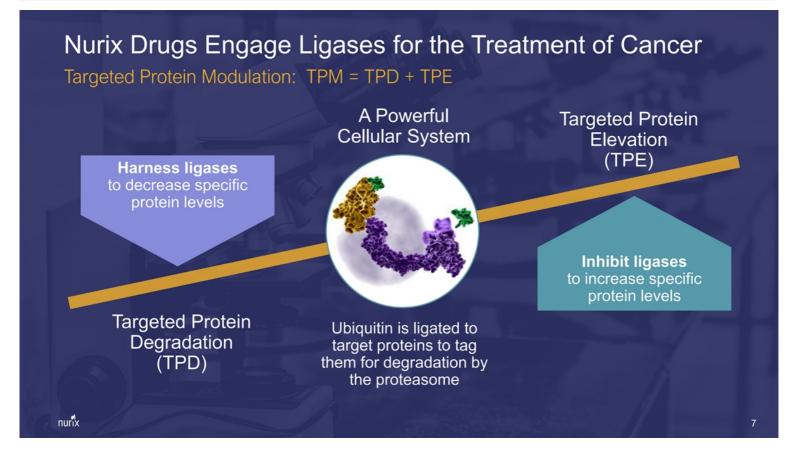
Proteins

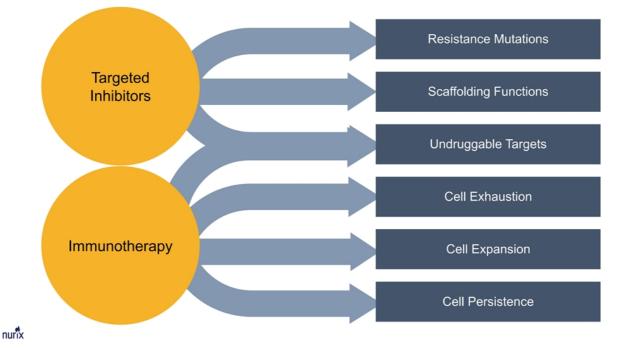
Antibodies Therapeutic


Nucleic Acid-Based Therapies

Antisense, RNAi Gene Therapy CRISPR

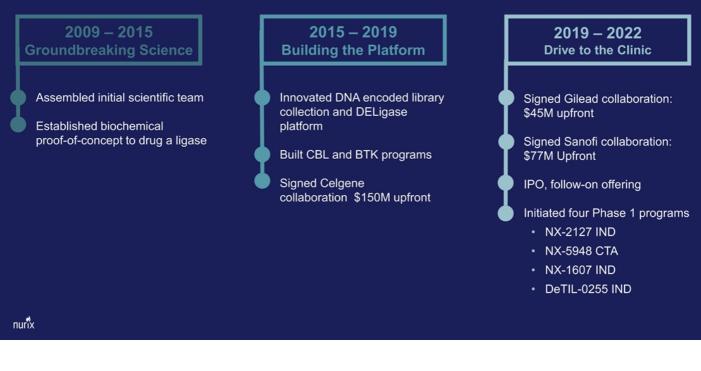
Adoptive Cell Therapy


DeTIL


Targeted Protein Modulation (TPM) to *Increase* or *Decrease* Specific Protein Levels

Small Molecule E3 Ligase Modulators

nurix



Targeted Protein Modulation Addresses Key Limitations of Leading Cancer Therapy Modalities

The Evolution of Nurix Therapeutics

Breakthrough Science, Breakthrough Drugs

Nurix Is Advancing Four Wholly Owned Clinical Programs with a Deep Pipeline of Proprietary and Partnered Novel Targets

MOA	Drug Program	Target/ Delivery	Therapeutic Area	Pre-Clinical	Phase 1	Phase 2	Phase 3
TPD -	NX-2127 Degrader	BTK-IKZF Oral	B-Cell Malignancies				
	NX-5948 Degrader	BTK Oral	B-Cell Malignancies				
	NX-1607 Inhibitor	CBL-B Oral	Immuno-Oncology				
TPE	DeTIL-0255 Cell Therapy	Adoptive Cell Therapy <i>Ex vivo CBL-B</i> Inhibition	Gynecologic Malignancies				

nurix

Unmet Need in CLL

Anthony Mato, MD, MSCE Director, CLL Program, Memorial Sloan Kettering Cancer Center

First Targeted Protein Degradation Drugs in Hematologic Malignancies: NX-2127 & NX-5948

NX-2127: BTK Degrader With Immunomodulatory Activity & Initial Phase 1a Clinical Findings

NX-2127 & NX-5948: Multiple Market Opportunities Robert J Brown, MD EVP, Head of Clinical Development

Stefani A Wolff COO, EVP of Product Development

Q&A / Break

nurix

First Targeted Protein Elevation Drugs in Immuno-Oncology: NX-1607 & NX-0255

CBL-B: Master of the Immune Response Cristiana Guiducci, PhD SVP, Immunology and Oncology Research

NX-1607: Biomarkers that Light the Way Robert J Brown, MD EVP, Head of Clinical Development

DeTIL-0255: Drug Enhanced Cell Therapy in the Clinic Michael T Lotze, MD Chief Cellular Therapy Officer

nurix

The Genesis: Powerful

 DELigase R&D Platform
 Chief Scientific Officer

 Financial Snapshot
 Hans van Houte
Chief Financial Officer

Gwenn M Hansen, PhD

Conclusions Q&A / Adjourn

Arthur T Sands, MD, PhD President, CEO and Board Director

nurix

The Team... Conquering Cancer

Arthur T Sands, MD, PhD President, Chief Executive Officer, and Board Director

Hans van Houte Chief Financial Officer

Gwenn M Hansen, PhD Chief Scientific Officer

Stefani A Wolff Chief Operating Officer and Executive Vice President, Product Development

Cristiana Guiducci, PhD Senior Vice President, Immunology and Oncology Research

Michael T Lotze, MD Chief Cellular Therapy Officer

Christine Ring, PhD, JD General Counsel and Secretary

Robert J Brown, MD Executive Vice President, Head of Clinical Development

Jason Kantor, PhD Executive Vice President, Finance and Business Strategy

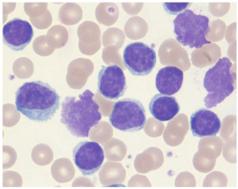
Key Messages for Today

Resistance has met its match with targeted protein modulation We have positive and exciting findings from the first trial of a TPD in a hematologic malignancy

We set the stage for the next breakthrough in immune oncology

with **more to come** from our powerful platform

nurix


Bench-to-Bedside and Back: Addressing the unmet needs in Chronic Lymphocytic Leukemia in 2022

16

Anthony R. Mato, MD, MSCE Associate Attending Director, Chronic Lymphocytic Leukemia Program Memorial Sloan Kettering Cancer Center New York, New York

Chronic Lymphocytic Leukemia

- CD5+ mature B-cell neoplasm
- · Peripheral blood, lymph node and bone marrow compartments
- Median age at diagnosis: 72 years
- Most common leukemia in Western countries
- Heterogenous clinical presentation

Remarkable Basic, Translational and Clinical Scientific Advances

An era of targeted therapy for treatment of CLL

Burger NEJM 2020; Image: Carrll TC and Venkataraman G, ASH Image Bank 2018

17

Era of Targeted Therapies: Two Key Pathways

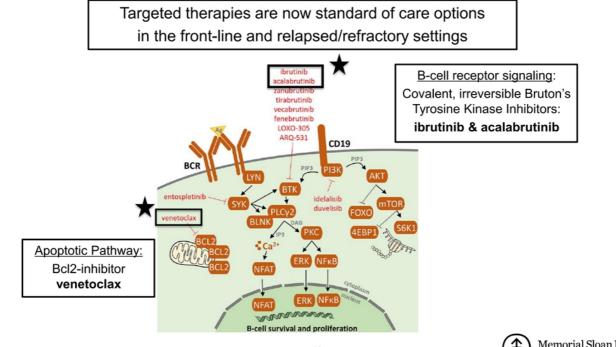


Figure from Sedlarikova et al. Frontiers in Oncology 2020

18

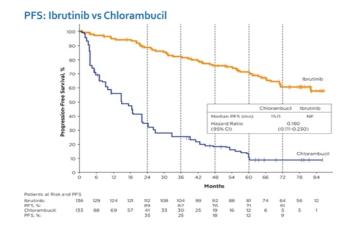
What are the unmet needs in the R/R setting?

Limitations of covalent BTK inhibitors and venetoclax

Limitations of noncovalent BTK inhibitors

No standard of care for double-refractory disease

19



Covalent BTK inhibitors: Resistance and Intolerance Continue to be Major Reasons for Discontinuation

Even with Second Generation Agents!

Clinical Trials and Real-World Data

7 Years of Follow-Up in the RESONATE-2 Study

Overall discontinuation rate at 7 years = 53%

	Favor ibrutinib	Favor chlorambucil	<u>N</u>	Hazard Rat	io 95% CI
All patients	le-l		269	0.167	(0.117, 0.238)
Age					
< 70)+		80	0.090	(0.036, 0.222
≥ 70	He-H		189	0.188	(0.126, 0.279)
Rai stage at baseline					
Stage 0 – II	H•I		137	0 212	(0.130, 0.345)
Stage III - IV	H+H		132	0.128	(0.076, 0.217)
ECOG at baseline					
0	H+H		112	0.187	(0.111, 0.314)
1-2	He-I		157	0.156	(0.095, 0.254)
Bulky disease					
< 5 cm	H+H		170	0.163	(0.102, 0.262)
> 5 cm	H=H		94	0125	(0.070, 0.225
High risk (7P53 mutation,* del[11q], and/or unmutated IGHV)					
Yes	₽-E		142	0.091	(0.054, 0.152)
No	i i i i i i i i i i i i i i i i i i i		127	0.260	(0.155, 0.435)
β ₂ -microglobulin at baseline					
≤ 3.5 mg/L	H		74	0.267	(0.134, 0.532)
> 3.5 mg/L	Ie 3		174	0.118	(0.075, 0.185)
	0.0 0.5	1.0 1.5 2.0			
		ard Ratio			

Efficacy

- · Ibrutinib-treated patients had an 84% reduction in risk of progression or death
- Ibrutinib led to a 97% reduction in risk of PD or death in patients with del(11q) and 80% for those without del(11q) vs chlorambucil
- · Ibrutinib led to an 89% and 80% reduction in risk of PD or death in patients with unmutated and mutated IGHV, respectively, vs chlorambucil

Barr PB, et al. ASCO 2020. Abstract 7523.

21

Ibrutinib Discontinuation For Intolerance in the "Real World Setting"

Toxicities and outcomes of 616 ibrutinibtreated patients in the United States: a real-world analysis

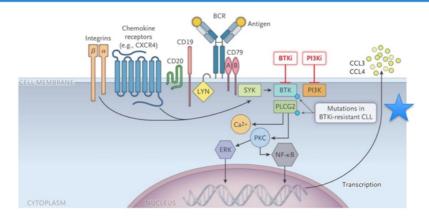
41% of patients discontinued ibrutinib at a median follow-up of 17 months

Toxicity accounted for the **majority** of discontinuations (over half) in both F/L and R/R CLL patients

Most common toxicities in R/R population: **atrial fibrillation 12.3%**, **infection 10.7%**, **pneumonitis 9.9%**, **bleeding 9%**, **and diarrhea 6.6%**

BTK, Bruton tyrosine kinase; CLL, chronic lymphocytic leukemia; F/L, first line; R/R, relapsed/refractory. Mato et al *Haematologica* 2018;103:874-879.

2	2
~	۷

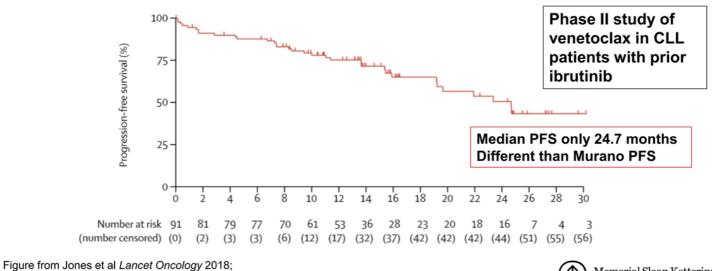

Reason for ibrutinib discontinuation	lbrutinib in front-line (n=19)	Ibrutinib in relapse (n=231)
Toxicity	63.1% (n=12)	50.2% (n=116)
CLL progression	15.8% (n=3)	20.9% (n=49)
Other/unrelated death	5.3% (n=1)	12.1% (n=28)
Physician's or patient's preference	10.5% (n=2)	6.7% (n=15)
RT DLBCL	5.3% (n=1)	4.6% (n=10)
Stem cell transplantation/CAR T-cel	1 0	3.3% (n=8)
Financial concerns	0	0.8% (n=2)
Secondary malignancy	0	0.8% (n=2)
RT Hodgkin lymphoma	0	0.4% (n=1)

B-cell lymphoma; CAR T-cell: chimeric antigen receptor T-cell); RT: Richter transformation

This study identified covalent BTK inhibitor **intolerance** as a major emerging issue in the field of CLL

Acquired Resistance to Covalent BTKi

- Majority of patients have identified mutations in *BTK*C481 at the time of disease progression on ibrutinib; ~53-87% of patients
- · Mutations also identified in PLCG2, immediately downstream of BTK
- BTKC481 mutations are also the main mechanism of resistance for acalabrutinib; 69% of patients


Figure from Burger et al NEJM 2020; Woyach et al NEJM 2014; Woyach et al JCO 2017; Scarfo et al EHA 2020; Ahn et al Blood 2017; Woyach et al ASH 2019; Burger Nature Communications 2016

23

Treatment of CLL After Covalent BTKi

- Venetoclax: oral BCL2-inhibitor
- Front-line setting and relapsed setting including after cBTKi
- · Approved as fixed-duration therapy (24 months in R/R setting)

Seymour et al *NEJM* 2020; Fischer et al *NEJM* 2020

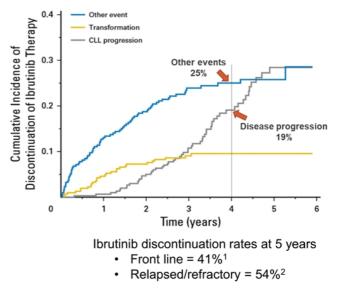
24

Memo Cancer

Patients on Landmark R/R Studies Were Not Treated on Chemotherapy-Free Pathways or With Prior Novel Agents

Agent	Study Name (Control Arm)	Number treated	Median (range) prior therapies	Percent on modern chemotherapy free pathways	Percent treated with ≥ 1 BTK, Ven or PI3K-i
Ibrutinib	RESONATE (ofatumumab)	195	3 (1 - 12)	0%	0%
Acalabrutinib	ASCEND (investigator's choice: BR or idela-ritux)	155	1 (1 - 8)	0%	0%
Venetoclax monotherapy	Del 17p study (single arm)	107	2 (0 - 10)	Unknown <3.7%	3.7% (n=4)
Venetoclax- rituximab	MURANO (BR)	194	1 (1 - >3)	Unknown <2.6%	2.6% (n=5)
Idelalisib- rituximab	STUDY 116 (placebo-ritux)	110	3 (1 – 12)	0%	0%
Duvelisib	DUO (ofatumumab)	160	2 (1 – 10)	0%	0%

Only 9 of 921 patients (~1%) from 6 landmark studies were previously treated with at least one BTKi, PI3Ki or venetoclax and likely none on a truly modern chemotherapy-free pathway



Memorial Sloan Kettering Cancer Center

A

Resistance and Intolerance Limit Covalent BTK Inhibitor Outcomes

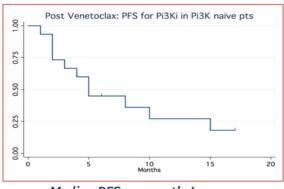
- Options following covalent BTK inhibitor treatment are limited:
 - Covalent BTK inhibitor retreatment: Only effective in the context of covalent BTK intolerance, not progression
 - Venetoclax: Efficacious but complicated administration
 - PI3K Inhibitors: Limited benefit in this population and significant toxicity burden
 - Chemoimmunotherapy: Limited benefit in this population and most current patients have already received these regimens

¹Woyach et al. J Clin Oncol. 2017;35:1437-1443. ²Burger. Leukemia 2020;34:787-7898

26

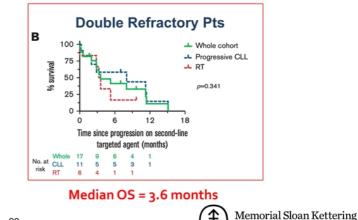
Memorial Sloan Kettering Cancer Center

Ibrutinib discontinuation from 4 prospective studies¹


Double Exposed CLL Patients

The Cutting Edge of Unmet Needs in the Clinic Today

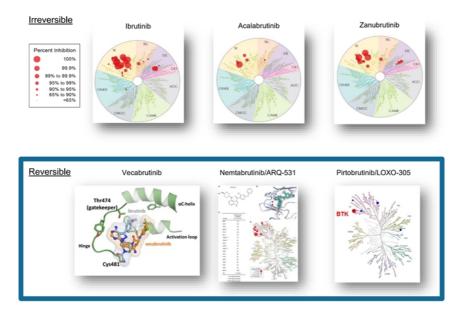
After BTKi \rightarrow Venetoclax: PI3Ki did not result in durable remissions and therefore is <u>not an acceptable SOC</u> in the 3rd line setting in modern era Outcomes of patients with CLL sequentially resistant to both BCL2 and BTK inhibition


Thomas E. Lew, ^{1,2,*} Victor S. Lin, ^{1,3,*} Edward R. Cliff,¹ Piers Blombery, ^{1,3,4} Ella R. Thompson,⁴ Sasanka M. Handunnetti, ¹ David A. Westerman, ^{1,3,4} Bryone J. Kuss,⁵ Constantine S. Tam, ^{1,3,5} David C. S. Huang,^{2,3} John F. Seymour, ^{1,3} Andrew W. Roberts, ^{1,3} and Mary Ann Anderson^{1,2}

¹Department of Clinical Haematology, The Royal Melbourne Hospital and Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; ²Blood Cells and Blood Cancer Division, Waiter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia; ²Tocally of Medicine, Dentisity and Health Sciences, The University of Melbourne, Parkville, VIC, Australia; ⁴Operatment of Parthology, Teet MacCallum Cancer Centre, Melbourne, VIC, Australia; ⁴College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia; and ⁴Department of Haematology, St Vincent's Hospital Melbourne, Fitzroy, VIC, Australia;

Median PFS = 4 months!

Mato et al, CCR 2020, Lew, et al Blood Advances 2022



Cancer Center

Noncovalent BTK Inhibitors

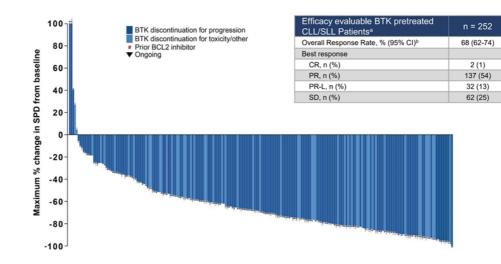
Several BTKi Options to Consider with Differences in BTKi Specificity, MOA, and Potential for Off-target Effects

Kaptein et al. Blood 2018;132(suppl 1):1871.

30

BTK Pretreated CLL/SLL Patient Characteristics

Characteristics	N = 261
Median age, y (range)	69 (36-88)
Female, n (%) Male, n (%)	84 (32) 177 (68)
ECOG PS ^a , n (%) 0 1 2	138 (53) 104 (40) 19 (7)
Median number of prior lines of systemic therapy (range)	3 (1-11)
Prior therapy, n (%) BTK inhibitor Anti-CD20 antibody Chemotherapy BCL2 inhibitor PI3K inhibitor CAR-T Stem cell transplant Allogeneic stem cell transplant Autologous stem cell transplant	261 (100) 230 (88) 207 (79) 108 (41) 51 (20) 15 (6) 6 (2) 5 (2) 1 (<1)
Reason discontinued prior BTKi, n (%) Progressive disease Toxicity/Other	196 (75) 65 (25)

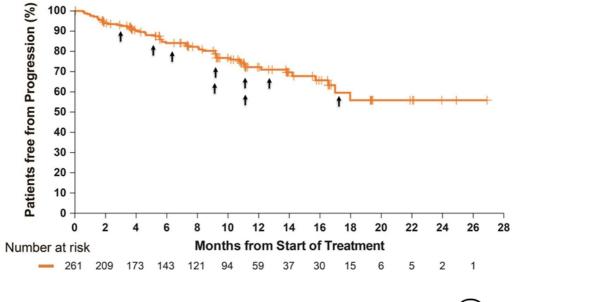

Baseline Molecular Characteristics ^a	
Mutation status, n (%)	
BTK C481-mutant	89 (43)
BTK C481-wildtype	118 (57)
PLCG2-mutant	33 (16)
High Risk Molecular Features, n (%)	
17p deletion	51 (28)
TP53 mutation	64 (37)
17p deletion or TP53 mutation	77 (36)
Both 17p deletion and TP53	38 (27)
mutation	168 (84)
IGHV unmutated	45 (25)
11q deletion	

Data cutoff date July 16, 2021. BTK, Bruton tyrosine kinase; ECOG, Eastern Cooperative Oncology group performance status; Total % may be different than the sum of the individual components due to rounding. "Molecular characteristics were determined centrally, in those patients with sufficient sample to pass assay quality control. 207 patients were tested for BTK and PLCG2, 180 patients for 17p deletion, 175 patients for TP53, 143 patients for 17p deletion + TP53, 200 patients for IGHV and 180 patients for 11q deletion. Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html 31

31

Pirtobrutinib Efficacy in BTK Pretreated CLL/SLL Patients

Data cutoff date July 16, 2021. BTK, Bruton tyrosine kinase: CLL, chronic lymphocytic leukemia; CR, complete response: PR, partial response: SD, stable disease; SLL, small lymphocytic leukemia. *Patients with >100% increase in SPD. Data for 30 patients are not shown in the waterfall plot due to no measurable target lesions identified by CT at baseline, discontinuation prior to first response assessment, or lack of adequate imaging in follow-up. Efficacy evaluable patients are those who had at least one post-baseline response assessment or had discontinued treatme prior to first post-baseline response assessment. "ORR includes patients with a best response of CR, PR, and PR-L, Response status per ixCLL 2018 according to investigator assessment. Total % may be different than the sum of the individual components due to rounding. Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html 32


32

From the Clinic to the Lab

Mechanisms of Resistance to ncBTKi

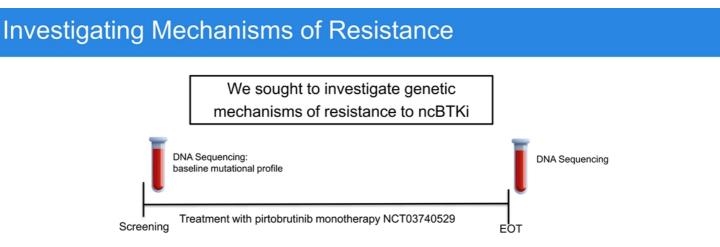
Progression on Pirtobrutinib: MSK Cohort

34

Mato et al. Abstract 391. ASH 2021. https://ash.confex.com/ash/2021/webprogram/Paper147599.html

Memorial Sloan Kettering

Cancer Center

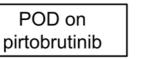

The NEW ENGLAND JOURNAL of MEDICINE

Mechanisms of Resistance to Noncovalent BTKi

ORIGINAL ARTICLE FREE PREVIEW

Mechanisms of Resistance to Noncovalent Bruton's Tyrosine Kinase Inhibitors

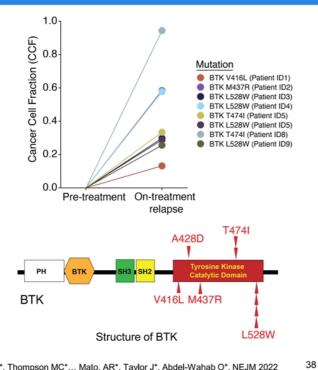
Eric Wang, Ph.D., Xiaoli Mi, M.D., Meghan C. Thompson, M.D., Skye Montoya, B.Sc., Ryan Q. Notti, M.D., Ph.D., Jumana Afaghani, B.Sc., Benjamin H. Durham, M.D., Alex Penson, Ph.D., Matthew T. Witkowski, Ph.D., Sydney X. Lu, M.D., Ph.D., Jessie Bourcier, M.D., Simon J. Hogge, Ph.D., Caroline Erickson, B.Sc., Dan Cui, B.Sc., Hana Cho, B.Sc., Michael Singer, B.Sc., Tulasigeri M. Totiger, Ph.D., Sana Chaudhry, B.Sc., Mark Geyer, M.D., Alvaro Alencar, M.D., Adam J. Linley, Ph.D., M. Lia Palomba, M.D., Catherine C., Coombs, M.D., Jae H. Park, M.D., Andrew Zelenetz, M.D., Ph.D., Lindsey Roeker, M.D., Mary Rosendahl, Ph.D., Donalde, T.Sai, M.D., Ph.D., Kein Ebata, Ph.D., Barbara Brandhuber, Ph.D., David M. Hyman, M.D., Iannis Aifantis, Ph.D., Anthony Mato, M.D., M.S.C.E., Justin Taylor, M.D., and Omar Abdel-Wahab, M.D.


- Collected patient samples at screening and at the time of disease progression for CLL/SLL patients treated with pirtobrutinib.
 - Peripheral blood and bone marrow and lymph node samples if clinically indicated.
- Performed **DNA sequencing** with **MSK IMPACT Heme** at baseline and at the time of disease progression for CLL/SLL patients treated with pirtobrutinib monotherapy.

MSKCC CLL Program and MSKCC Abdel-Wahab lab

36

CLL Patients with POD on Pirtobrutinib


9 CLL pts with PLCG2 or BTK mutations at POD

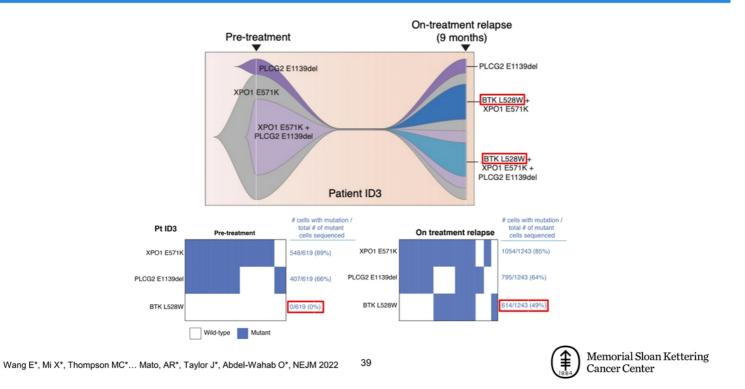
- 100% with prior covalent BTKi (100% ibrutinib)
- Prior lines of therapy: range 2-10
- Baseline BTK C481 mutation: 44.4%
- Baseline PLCG2 mutation 33.3%
- · Treated with pirtobrutinib for 3-17 months
- Overall response rate to pirtobrutinib 44.4%

Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022 37

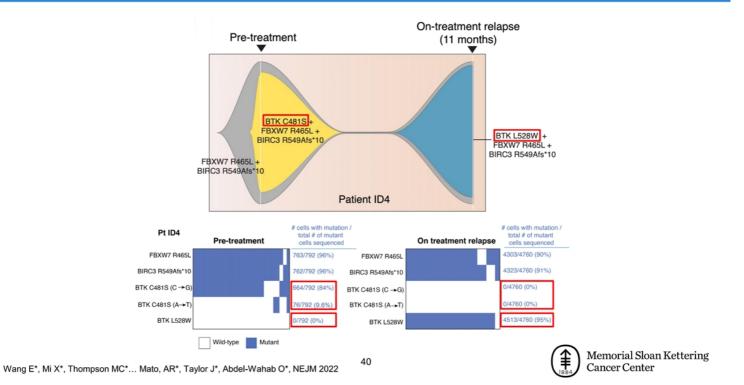
Acquired BTK Mutations on Pirtobrutinib

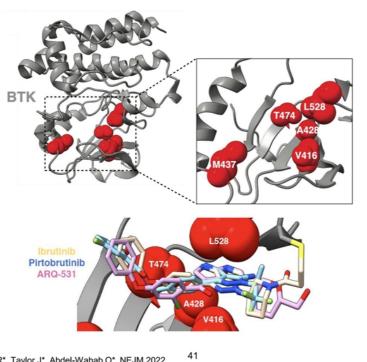
Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022

We identified novel acquired mutations in BTK at the time of disease progression including:

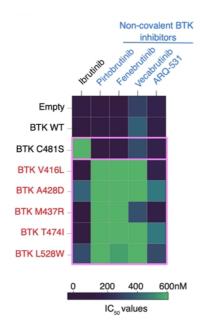

- **BTK L528W** •
- **BTK V416L** •
- BTK M437R -
- **BTK** T474I •
- BTK A428D •

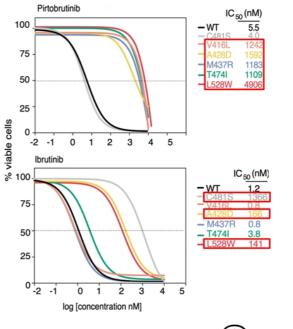
These mutations cluster around the tyrosine kinase catalytic domain of BTK


Additionally, several patients with progressive disease had pre-existing PLCG2 mutations


Acquired BTK L528W in Multiple Subclones at the Time of Relapse

Suppressed BTK C481S but Acquired L528W at the Time of Relapse


Novel BTK Mutations Identified in Pirtobrutinib-Resistant Patients Clustered Within the BTK Kinase Domain



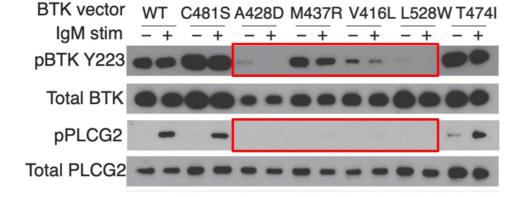
Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022 4

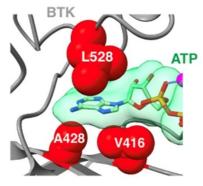
Novel BTK Mutations Confer Broad Resistance to Noncovalent BTK Inhibitors

Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022

42

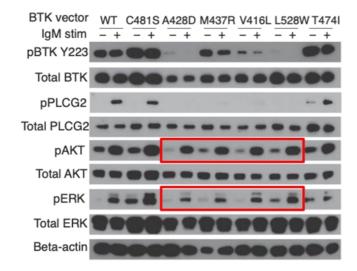
Novel BTK Mutations Impaired Binding of Both Noncovalent and Covalent Inhibitors

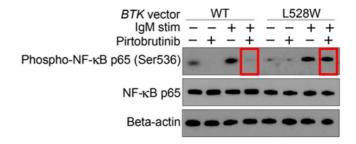

		Noncovalent inhibitors (K _p in nM)				Covalent inhibitors (Kinact/KI, in μM^{-1} sec ⁻¹ ; except where indicated)				
BTK Protein	Pirtobrutinib	ARQ531	Vecabrutinib	Fenebrutinib	Ibrutinib	Acalabrutinib	Zanubrutinib			
WT BTK	0.9	87	0.8	0.2	0.044	0.005	0.052			
A428D	No binding detected	2300	No binding detected	No binding detected	No binding detected	No binding detected	No binding detected			
M437R	71	29	1.2	159	0.088	<0.001	0.050			
T474I	14	8000	14	2.1	0.015	<0.001	<0.001			
L528W	No binding detected	No binding detected	24	1.5	No binding detected	<0.001	No binding detected			
C481S	2.6	79	2.5	5.1	29 nM	358 nM	69 nM			


*Red values indicate mutants which decrease drug binding affinity by at least 10-fold

Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022 43

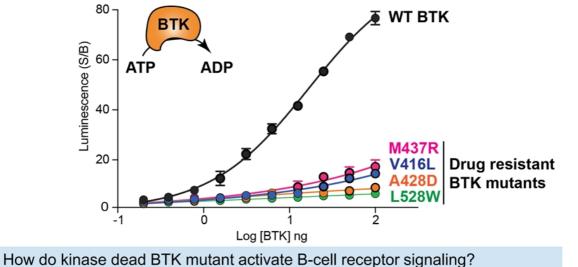
Many of the Novel Acquired BTK Mutations Reduced Phosphorylation of BTK and Downstream $\mathsf{PLC}\gamma2$





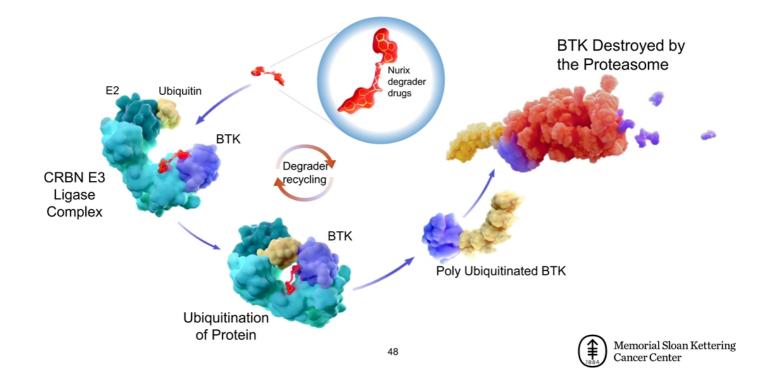
Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022 44

Upon IgM Stimulation, "Kinase Dead" BTK Mutants Still Enabled AKT, ERK, and NF-KB Activation

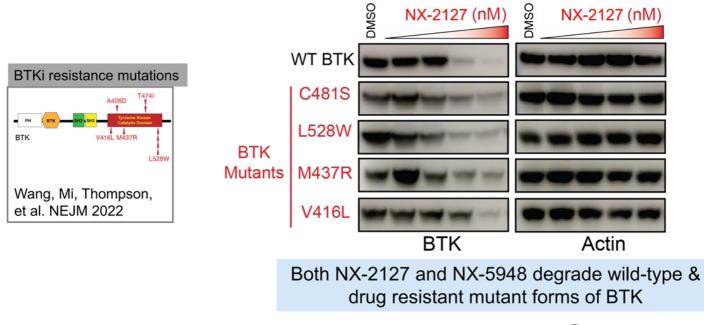

Wang E*, Mi X*, Thompson MC*... Mato, AR*, Taylor J*, Abdel-Wahab O*, NEJM 2022 45

Next Steps & New Means to Inhibit BTK

Discovery of Kinase Dead BTK Mutants



Are cells dependent on mutant BTK? Can we target these BTK mutants?


47

Men Cano

Targeted Protein Degradation of BTK

Effective Degradation of Wild-type and Mutant BTK Protein with Nurix Compounds

49



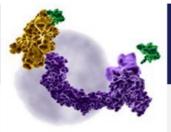
Leader in Targeted Protein Modulation

First Targeted Protein Degradation Drugs in Hematologic Malignancies

NX-2127 & NX-5948

R&D Day New York, NY May 26, 2022

Robert J Brown, MD EVP, Head of Clinical Development Nurix Therapeutics

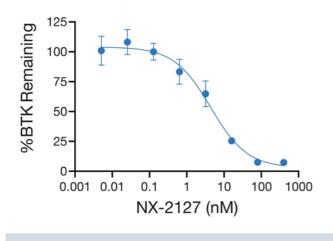

nurix

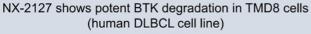
A First-In-Class Franchise of BTK Degraders: NX-2127 & NX-5948

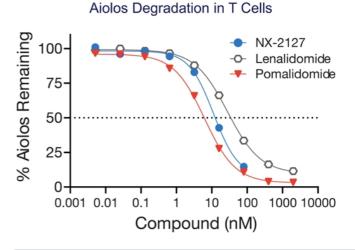
BTK DEGRADATION & IMMUNOMODULATION NX-2127 (Oncology)

- Robust BTK degradation and immunomodulatory activity observed across all dose levels to date
- Positive clinical activity in all CLL patients, including responses in doublerefractory patients with BTK or BCL2 mutations
- Initiated cohort expansion for CLL patients
- Dose exploration is ongoing for patients with NHL

nurix

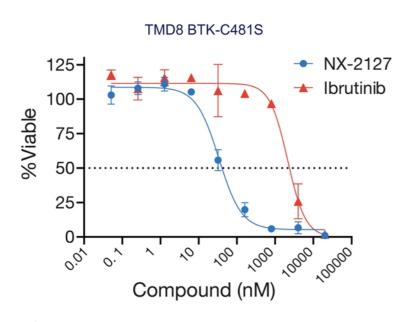



BTK DEGRADATION NX-5948 (Oncology & Autoimmune)


- Active against multiple BTK inhibitorresistant mutations
- Crosses blood brain barrier and degrades BTK in brain-resident lymphoma cells and microglia in animal models
- Activity in multiple models of autoimmune disease
- First patient dosed in Phase 1a dose escalation trial

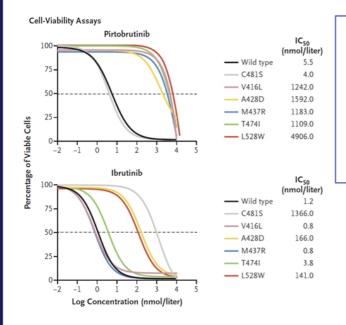
NX-2127 Degrades Both BTK and Immunomodulatory Cereblon Neosubstrate Aiolos

BTK Degradation in TMD8 Cells



NX-2127 degradation of Aiolos in human T cells occurs at a similar potency to lenalidomide and pomalidomide

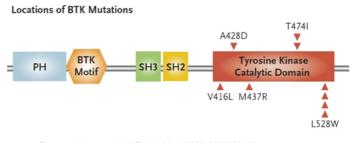
NX-2127 Is Active Against Ibrutinib-Resistant Tumor Cell Lines



BTK-C481 mutations are the most common resistance mutations to ibrutinib and other covalent BTK inhibitors

NX-2127 may offer a therapeutic option for patients with resistance to BTK inhibitors

nurix


Resistance to Noncovalent BTK Inhibitors Presents a New and Growing Challenge to Treatment

The NEW ENGLAND JOURNAL of MEDICINE

"Our data suggest potential new therapeutic approaches to overcome the newly described BTK inhibitor resistance mechanisms. For example, these data provide a rationale for therapies aimed at addressing the potential scaffold function of BTK rather than inhibiting BTK kinase activity."

Source: Wang et al, N Engl J Med 2022;386:735-43

nurix

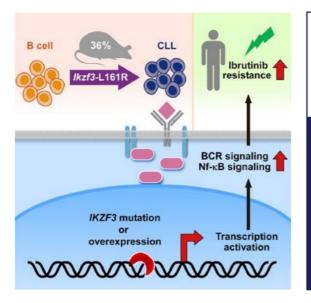
Degraders Directly Address Emerging Resistance Mutations and **BTK Scaffolding Activity**

L528W

BTK mutations identified from patients progressing on the noncovalent inhibitor pirtobrutinib T474I A428D ¥ • BTK **Tyrosine Kinase** PH SH3 SH2 Motif **Catalytic Domain** V416L M437R

NX-2127 has demonstrated clinical activity in patients harboring a variety of BTK mutations

Nurix has confirmed the activity of NX-2127 and NX-5948 in multiple BTKiresistant engineered cell lines


Source: Wang et al, N Engl J Med 2022;386:735-43

nurix

Aiolos (IKZF3) Overexpression Drives BTK Inhibitor Resistance in CLL, a Rationale for a Combination Strategy

dysregulation

inhibitor resistance."

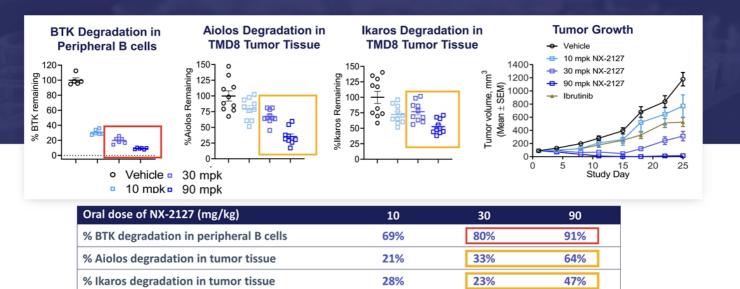
Cancer Cell A hotspot mutation in transcription factor *IKZF3* drives B cell neoplasia via transcriptional

"Our results thus highlight IKZF3 oncogenic function in CLL via transcriptional dysregulation and demonstrate that this pro-survival function can be achieved by either somatic mutation or overexpression of this CLL

driver. This emphasizes the need for combinatorial

approaches to overcome IKZF3-mediated BCR

Source: Lazarian et al; Cancer Cell 39, 380-393, March 8, 2021


nurix

57

Article

BTK Degradation of 80%+ Drives Potent Anti-tumor Activity in Preclinical Models

Ikaros and Aiolos degradation also achieve target range at therapeutic doses

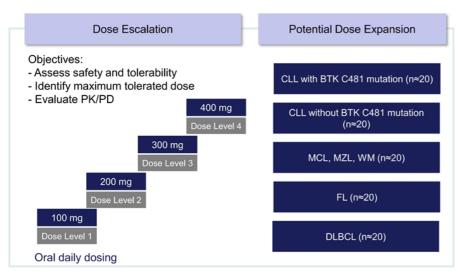
58%

74%

100%

% Tumor growth inhibition vs Vehicle(Day 24)

nurix


NX-2127-001: Initial Phase 1a Clinical Findings

Meeting the Need in CLL

nurix

NX-2127-001 Trial Design and Active Sites

CLL, chronic lymphocytic leukemia; DLBCL, diffuse large B cell lymphoma; FL, follicular lymphoma; MCL, mantle cell lymphoma; MZL, marginal zone lymphoma; WM, Waldenstrom's macroglobulinemia.

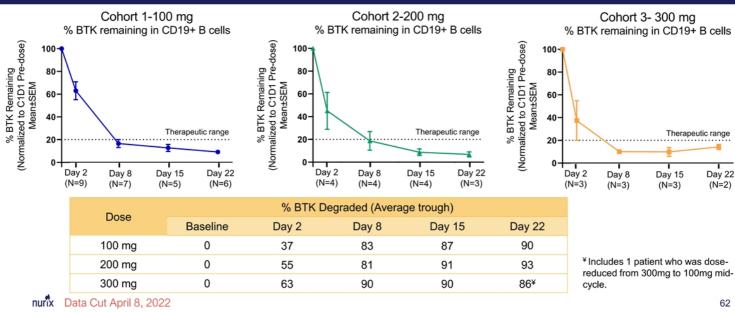
nurix

- Memorial Sloan Kettering Cancer Center
- MD Anderson Cancer Center
- City of Hope: Duarte, California
- National Institutes of Health Clinical Center
- Sarah Cannon Research Institute
 - Colorado Blood Cancer Institute
 - Florida Cancer Specialists
 - Tennessee Oncology
- University of California, San Francisco
- University of California, Irvine
- OSU Wexner Medical Center
- Swedish Cancer Institute, Seattle

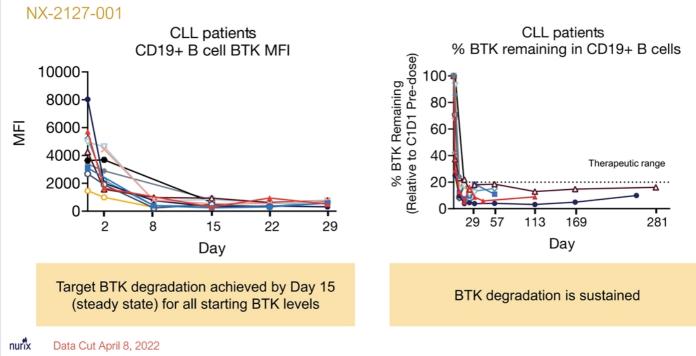
Heavily Pretreated Patient Population, Including Double-Refractory CLL Patients

NX-2127-001

Characteristics	Overall Populatio	on CLL	Non-CLL
	(N = 21)**	(N = 13)	(N=7)
Median Age, years (range)	76.0 (61 - 92)	76 (65 – 86)	77 (67 - 92)
Female, n(%)	7 (33.3%)	7 (53.8%)	0
Male, n(%)	14 (66.7%)	6 (46.2%)	7 (100%)
Prior Therapy*, median (range)	4.5 (1 – 8)	6.0 (2 – 8)	2.0 (1 - 5)
- BTK inhibitor, n(%)	16 (76.2%)	12 (92.3%)	4 (57.1%)
- BCL2 inhibitor, n(%)	7 (33.3%)	7 (53.8%)	0

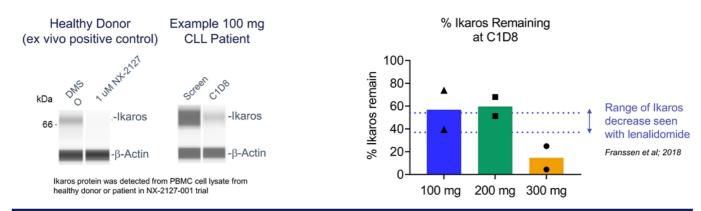

Type of Disease	Cohort 1 (100mg) (N = 12)	Cohort 2 (200mg) (N = 6)	Cohort 3 (300mg) (N = 3)	Total (N = 21)
Chronic Lymphocytic Leukemia (CLL)	8 (66.7%)	3 (50%)	2 (66.7%)	13 (61.9%)
Mantle Cell Lymphoma (MCL)	1 (8.3%)	1 (16.7%)	1 (33.3%)	3 (14.3%)
Diffuse Large B-Cell Lymphoma (DLBCL)	2 (16.7%)	1 (16.7%)	0 (0%)	3 (14.3%)
Waldenstrom's Macroglobulinemia (WM)	0 (0%)	1 (16.7%)	0 (0%)	1 (4.8%)
TBD***	1 (8.3%)	0 (0%)	0 (0%)	1 (4.8%)

* Prior therapies were not entered into the database for all enrolled patients at the time of Data Cut. Some data pending/ongoing.
** One patient's disease type wasn't identified in the EDC at the time of extract, but disease type was coded based on source data
*** One subject was screened into the study, but the indication and cohort weren't entered in the EDC at the time of data extract


nurix Data Cut April 8, 2022

Robust BTK Degradation Observed with NX-2127 Across All Dose Levels and Malignancies

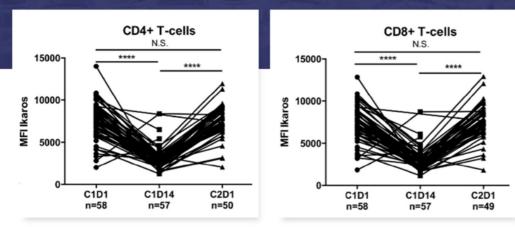
NX-2127-001

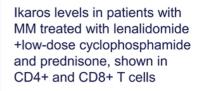


Rapid and Sustained Degradation of BTK in Patients with CLL

NX-2127 Demonstrates Greater Ikaros Degradation, Consistent with Cereblon Immunomodulatory Activity

NX-2127-001



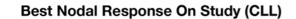

- · Degradation of cereblon neo-substrate Ikaros confirmed by Western Blot
- Ikaros degradation is sustained on treatment
- · Ikaros degradation consistent with published reports for immunomodulatory drugs

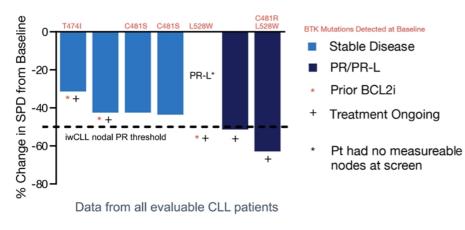
Lenalidomide Treatment Achieves 46-63% Ikaros Degradation in Immune Cells

Ikaros decreases:

- 63% median decrease in both CD4+ and CD8+ T cells
- 59% median decrease in NK cells
- 46% median decrease in B cells

Source: Franssen et al; Oncotarget, Vol. 9 (No. 74), 2018


NX-2127-001: Durable Benefit In CLL Patients With A Median of 6 Prior Treatments


	No. Prior Lines	Prior Venetoclax	Prior BTK- Targeted Therapy	BTK /BCL2 Mutations	1	2	3	4	5	6 6	ycle	(28 Days) 7	8	9	10	11	12
	2	No	ibrutinib	BTK: C481R, L528W			۲		۲		1						\rightarrow
	5	No	ibrutinib	None Detected			•			╞	-						
	8	Yes	ibrutinib	BTK: T474I		٠		\rightarrow	÷								
100 mg	TBD	TBD	TBD	Pending		\mapsto								study			ant
	TBD	TBD	TBD	Pending		\mapsto						All pa	atients	progreat at 100r			
	5	Yes	ibrutinib	Pending	-	\rightarrow						of clir	nical a	ctivity			
	8	Yes	ibrutinib	Pending	Disc	. Due to Pa	tient Choic	e									
	6	Yes	ibrutinib	None Detected							•	>			\rightarrow		50mg 100mg
200 mg	7	No	ibrutinib	BTK: C481S		•	Disc. D	oue to >7 D	ays Missed	Dose	s						200mg
	3	No	ibrutinib	BTK: C481S		<	> AE										SD PR-L
	4	Yes	ibrutinib, pirtobrutinib	BTK: L528W						-	\rightarrow					•	PR
300 mg	7	Yes	Ibrutinib, pirtobrutinib	BTK: C481R, L528W BCL2: G101V		AE											Ongoing

nurix Data Cut April 8, 2022

TBD: Data not available at time of database cut Note: Table excludes 1 patient included in overall population as dosing not available at time of database cut

NX-2127-001 Phase 1a: Positive Initial Findings in CLL Support Expansion at 100 mg

SPD, sum of the product of diameters; iwCLL, international Workshop on CLL

nurix Data Cut April 8, 2022

- Meaningful clinical benefit in CLL patients with a median of 6 prior lines of therapy
- Biologic activity including nodal reductions and/or lymphocytosis observed in all patients treated
- Responses in patients with resistance mutations to covalent and non-covalent BTK inhibitors
- Responses include a doublerefractory patient who had prior BCL2 inhibitor therapy

Safety Observations By Dose: All Patients, Grade ≥ 3 NX-2127-001

Adverse Event Preferred Term, Grade ≥3	100mg (N=10) n (%)	200mg (N=6) n (%)	300mg (N=3) n (%)
Neutropenia	1 (10%)	3 (50%)	2 (66.7%)
Hypertension	0 (0%)	1 (16.7%)	0 (0%)
Dyspnea	0 (0%)	1 (16.7%)	0 (0%)
Anemia	1 (10%)	1 (16.7%)	0 (0%)
Pain in extremity	0 (0%)	0 (0%)	1 (33.3%)
Clostridium difficile colitis	0 (0%)	1 (16.7%)	0 (0%)
Clostridium difficile infection	0 (0%)	1 (16.7%)	0 (0%)
Cognitive disorder	0 (0%)	0 (0%)	1 (33.3%)
Upper resp. tract infection	0 (0%)	1 (16.7%)	0 (0%)

Safety population included 19 subjects. Two subjects were assigned to the 100mg cohort but treatment was not entered in the EDC at time of extract.

nurix Data Cut April 8, 2022

Additional safety observations:

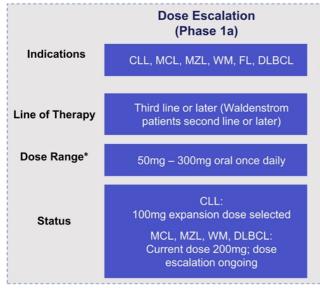
- Dose limiting toxicity observed at 300 mg in a CLL patient; cognitive AE believed to be related to immunomodulatory activity
- Two AEs of lower grade atrial fibrillation were observed at 100 mg in a patient with MCL, and at 200 mg in a patient with CLL

Preliminary Positive Clinical Findings Support Expansion of CLL Cohorts at the 100mg Dose

Robust BTK degradation achieved in all patients

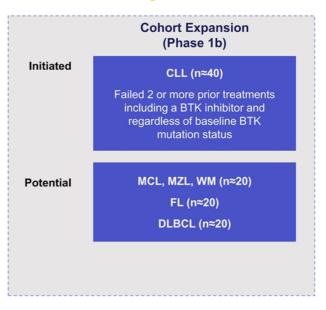
Immunomodulatory activity achieved in all patients

Favorable safety profile at dose selected for expansion cohorts


Meaningful clinical benefit observed in multiple CLL patients with a median of 6 prior treatments

Responses seen in the setting of resistance mutations to both covalent and non-covalent BTK inhibitor

Expansion dose declared in CLL at 100mg


NX-2127-001: Phase 1 First-in-Human Clinical Trial Design

Phase 1a continues in NHL and Phase 1b CLL cohort initiated at 100mg

*50mg dose added as per project Optimus guidance

nurix

Stefani A Wolff COO, EVP of Product Development Nurix Therapeutics

nurix

Nurix Portfolio of Degraders Poised To Take a Leadership Position

NX-2127

BTK degrader + immunomodulatory activity in B-cell malignancies

- Beachhead in CLL
- Near term commercial rationale
- Expansion into NHL

NX-5948

BTK degrader in B-cell diseases (malignancies and autoimmune)

- Potential across lines of therapy
- Opportunity in autoimmune indications (CNS penetrating immunology)

Expands market potential Opens more clinical and commercial opportunities Ability to capture more share

nurix

Multi-Billion-Dollar Revenue Opportunity Within the B-cell Therapy Universe for NX-2127 and NX-5948

- B-cell directed therapies represent almost \$18B in revenue in 2021
- BTK inhibitors worth \$8.4B in 2021 and expected to grow 90% to \$16B by 2026
- Anti-CD20s remain cornerstone of therapy in B-cell diseases with sales of \$9.4B in 2021
- Three branded anti-CD20 antibodies developed by Genentech expanded market opportunity and allowed them to capture majority of share
- NX-2127 and NX-5948 has potential to compete in multiple B-cell mediated diseases

2021 BTK inhibitor sales exclude double counting of profit shares on ibrutinib.

- 2026 estimate from Cortellis:1. Sales data is global-based (US and ex-US)2. Generic and biosimilar entry included in sales projections

GlobalData: Imbruvica LOE is 2026 (EU), 2027 (US)

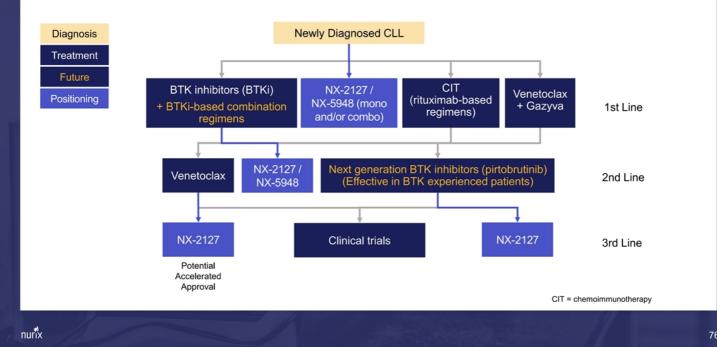
B-Cell Malignancies Opportunity

BTK inhibitors are a standard of care in certain hematologic malignancies (e.g., CLL, WM, MCL, MZL)

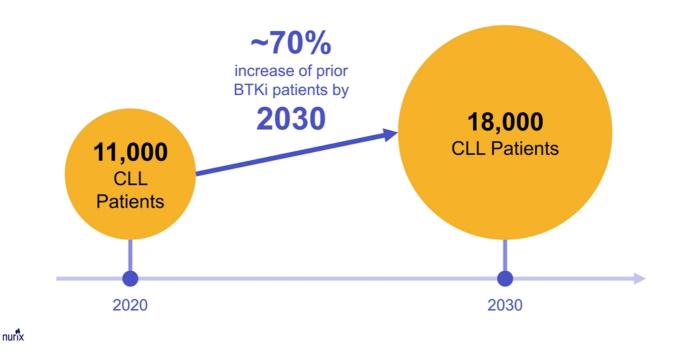
BTK degraders address key unmet needs arising from mutational escape

BTK degraders have potential to grow beyond traditional BTK-sensitive indications

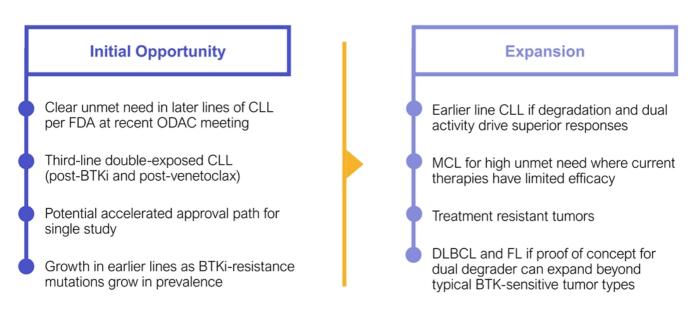
nurixnurix BTK, Bruton tyrosine kinase; DLBCL, Diffuse large B cell lymphoma; CLL, Chronic lymphocytic leukemia, SLL, small lymphocytic lymphoma; MCL, Marginal zone lymphoma; FL, Follicular lymphoma; NHL, non-Hodgkin lympho



NX-2127 Combines Activity of Two Blockbuster MOAs: BTK Inhibition and Immunomodulation


	39,700
Aggressive; MCL DLBCL B-CELL MALIGNANCIES ANNUAL IN (US & EU)	39 700
high unmet Chronic Lymphocytic Leukemia (CLL)	33,700
need Diffused Large B-Cell Lymphoma (DLBCL)	55,100
Disease Foliicular Lymphoma (FL)	26,200
Characteristics Mantle cell lymphoma (MCL)	6,200
Indolent:	10,700
Indolent; long tx	6,300
duration BTKi resistance, deepen responses Improve activity vs BTKi unmet need	
Size of bubble=annual incidence in US and EU	
The dual activity of NX-2127 has potential to meet a breadth of needs, capture share from existing markets and expand beyond BTK sensitive tumor types	

BTK, Bruton tyrosine kinase: DLBCL, Diffuse large B cell lymphoma; CLL, Chronic lymphocytic leukernia, SLL, small lymphocytic lymphoma; MCL, Mantile cell lymphoma; WM, Waldenstron macroglobulinemia; MZL, Marginal zone lymphoma; FL, Folicular lymphoma; NHL, non-Hodgkin lymphoma


Potential Positioning of Nurix BTK Degrader Franchise Across All Lines of Therapy in CLL

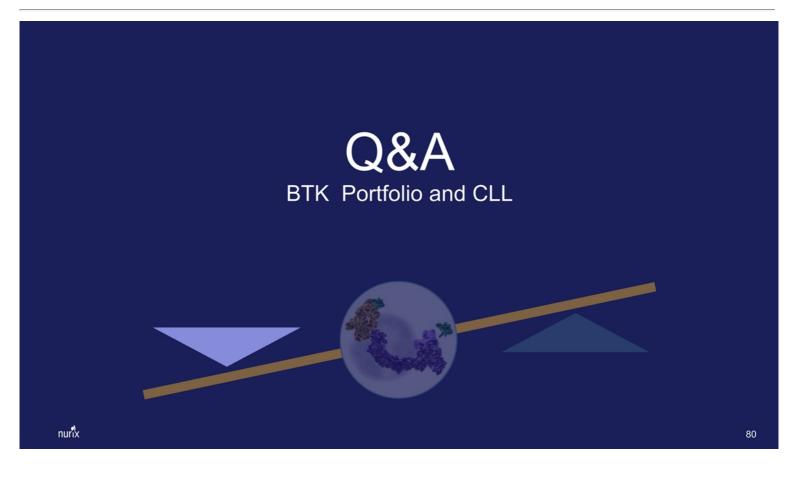
Considerable Growth in CLL Patients Previously Treated with BTK Inhibitors

NX-2127 Path to Market and Expansion

Nurix Is Creating a BTK Degrader Franchise: NX-2127 and NX-5948

Potential for BTK degraders to take share from established, blockbuster markets (BTK inhibitors and anti-CD20s)

Nurix is the leader in this new modality – BTK degradation


Multiple pathways for success in hematology/oncology

Autoimmune indications remain wide open for novel B-cell targeted modalities

79

Franchise of multiple BTK degraders

- ---> Address multiple markets and needs
- ---> Maximize share with differentiated product profiles
- ---> Establish beachheads in unmet need and expand

Leader in Targeted Protein Modulation

First Targeted Protein Elevation Drugs in Immuno-Oncology

NX-1607 & DeTIL-0255

R&D Day New York, NY May 26, 2022

CBL-B: Master of the Immune Response

Cristiana Guiducci, PhD SVP, Immunology and Oncology Research Nurix Therapeutics

nurix

First-in-Class Targeted Protein Elevation Drugs CBL-B Inhibitors

Rationale for targeting CBL-B in oncology

Highlight the properties and mechanism of action of Nurix's CBL-B inhibitors

Development of highly optimized proximal biomarkers and their use in the clinic

NX-1607-101 initial clinical experience

nurix

A Better Immuno-Oncology Target: A CBL-B Inhibitor Can Revolutionize Cancer Treatment

The ultimate goal of cancer immunotherapy is to generate a coordinated immune system response against cancer associated antigens

Immune checkpoint agents such as anti-PD-1/PD-L1 have demonstrated impressive long-lasting responses in only a subset of patients

Resistance mechanisms prevent most patients from responding:

- ---> Low antigen presenting cells and NK cells within the tumor
- ---> Tumor microenvironment not permissive to T cell trafficking in the tumor
- ---> Excessive T cell exhaustion from chronic antigen stimulation
- ---> Downregulation of MHC Class I

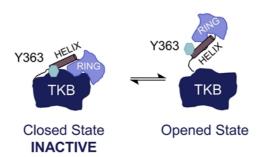
CBL-B inhibitors are optimal next generation IO agents: act on multiple immune cells, addressing multiple resistance mechanisms

Targeting CBL-B Enhances Antitumor Response

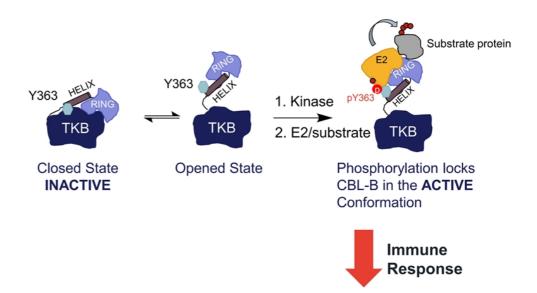
A Master Orchestrator of the Immune System

CBL-B mediated mechanisms strongly restrains a productive anti-tumor response

CBL-B inhibition increases:

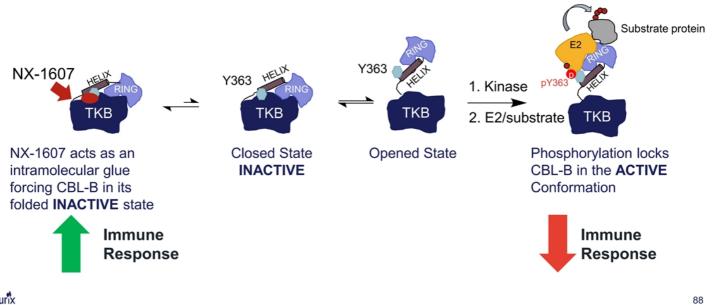

- DC and NK infiltration and function
- T cell priming
- Cytotoxic T cells function
- Ability of T cells to resist tumor immunosuppressive mechanisms: Treg, MDSC, and TGF-β

Profile and tumor initiality of the second s

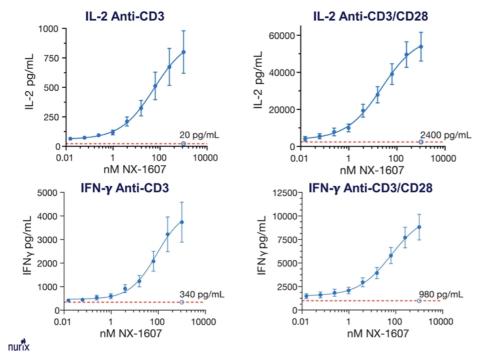

nurix

NX-1607 Mechanism of Action: Intramolecular Glue

CBL-B is in Equilibrium Between Closed and Opened State



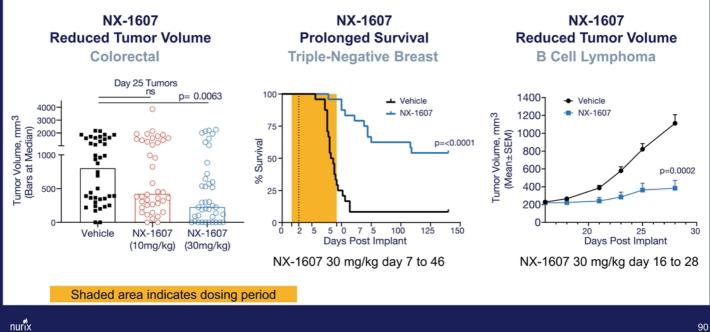
NX-1607 Mechanism of Action: Intramolecular Glue



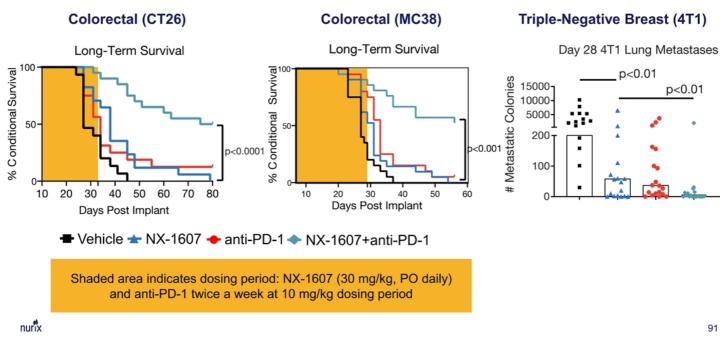
nurix

NX-1607 Mechanism of Action: Intramolecular Glue

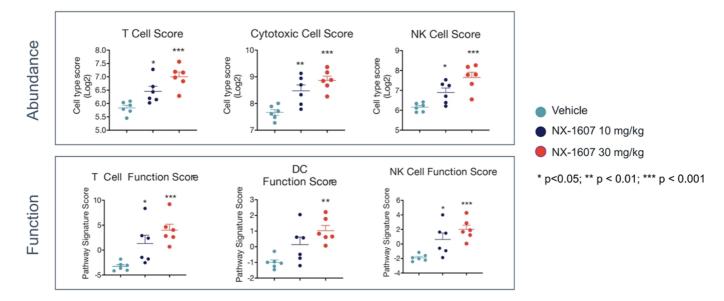
NX-1607 Increases IL-2 and IFN- γ Secretion in TCR Stimulated Primary Human T cells



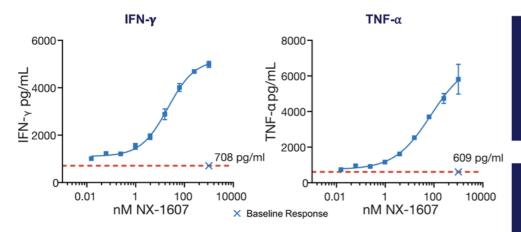
NX-1607 increases TCR stimulation-dependent production of IL-2 and IFN-γ in primary human T cells


NX-1607 has no impact in the absence of T cell stimulation as measured by proliferation, activation, or cytokine release

Cytokine Response
 Baseline Response


Single-Agent NX-1607 Induces Antitumor Response in Multiple Models

NX-1607 and Anti-PD-1 Synergize to Enhance Anti-tumor Effects and Survival of Mice in Multiple Tumor Models



NX-1607 Treatment Induces Dose Dependent T and NK Cell Intratumoral Infiltration and Enhanced Function

Tumor-bearing mice treated for 18 days with NX-1607 at 10 or 30 mg/kg. Tumor microenvironment profiled using NanoString technology.

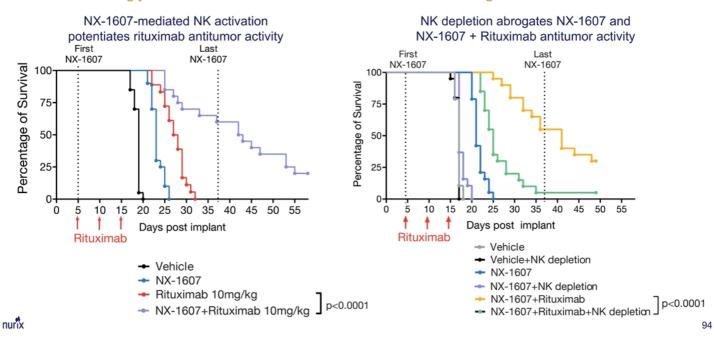
NX-1607 Increases Secretion of Pro-Inflammatory Cytokines in Human NK cells

NX-1607 increases stimulation-dependent production of IFN- γ and TNF- α in primary human NK cells

NX-1607 has no impact in the

absence of NK cell stimulation, as measured by cytokine

release


NK K562 Killing Assay

- 1 hour compound pre-treatment prior to addition of K562s target cells
- 6 hour NK/K562 coculture

nurix

Combination of NX-1607 and Rituximab Enhances Anti-tumor Activity in a Human NHL Animal Model

NX-1607 Strongly Potentiate Rituximab-Directed NK Cell ADCC Against Tumor Cells

What Makes a Good Clinical Biomarker?

Proximal to the target

Dose-responsive

Directly relates to the biologic mechanism of action

Translates from animal models to humans

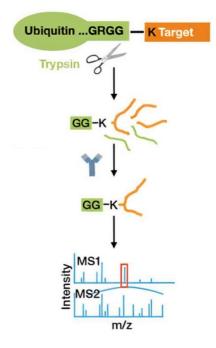
As the first to target CBL-B, Nurix is leading the field in biomarker discovery for this new mechanism of action

Proprietary Biomarkers Measure CBL Inhibition

Agnostic screening campaigns identified robust, reproducible and novel proximal biomarkers of CBL-B inhibition

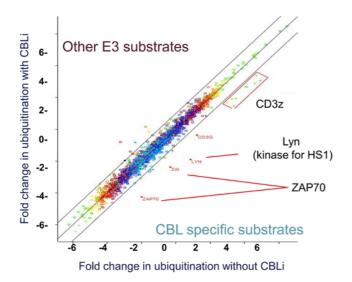
- ---> Ubiscan identified direct ubiquitination substrates of CBL-B E3 ligase
- → Phosphoscreen demonstrated increased levels of activated proteins caused by CBL-B inhibition

Nurix developed robust assays to detect multiple propriety proximal biomarkers of CBL-B inhibition in peripheral blood


In animal models, changes in these biomarkers correlated with anti-tumor efficacy and informed Phase 1a dose levels

Dose-proportional biomarker changes are observed in our ongoing Phase 1a trial

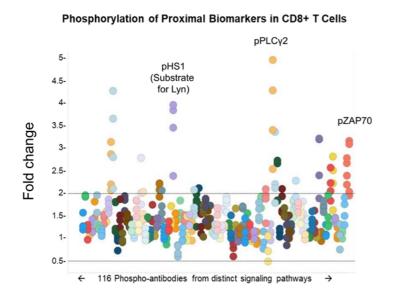
UbiScan Is a Method to Identify Direct Ubiquitination Substrates


- 1. CBL-B ubiquitinates proteins and targets them for degradation
- 2. Proteins that are ubiquitinated can be detected by ubiscan because they have GG or "diGly scar"
- 3. Antibodies recognizing the "scar" can be used to isolate CBL-B targeted proteins which are identified using mass spectroscopy
- 4. Inhibition of CBL-B decreases the ubiquitination of CBL-B substrates

Overview of UbiScan Technology

nurix

UbiScan Identified Direct CBL Substrates Within the T Cell Receptor (TCR) Signaling Cascade



Decreased signal represents direct substrates ubiquitinated by CBL-B ligase activity

Inhibiting CBL-B decreases ubiquitination of important T Cell receptor signaling molecules

nurix

Phospho-Protein Flow Cytometry Assay Identified Proximal Biomarkers

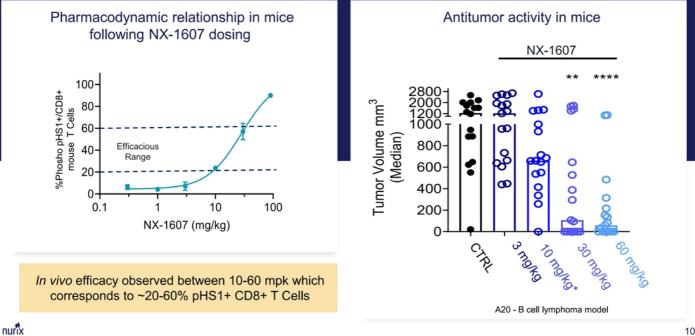
- Stimulated human PBMCs with or without CBL-B inhibition
- Cells were stained with a panel of phospho-specific antibodies for proteins downstream the TCR signaling
- Expression levels were
 assessed by flow cytometry
- Overlapping results from orthogonal assays (Ubiscan) provided confidence in proximal biomarker signals

In presence of CBL inhibitor, stimulation of the TCR results in the phosphorylation of:

ZAP70

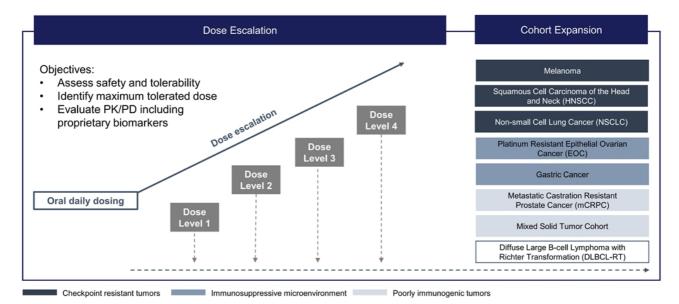
• Key organizer of downstream TCR signaling

PLC_{γ2}


- · Expressed in both T cells and B cells
- Associates with LAT and SLP-76 & becomes phosphorylated upon TCR stimulation

HS1

Substrate of LYN receptor, and an essential actin-regulatory adaptor protein at the immune synapse, via VAV1


nurix

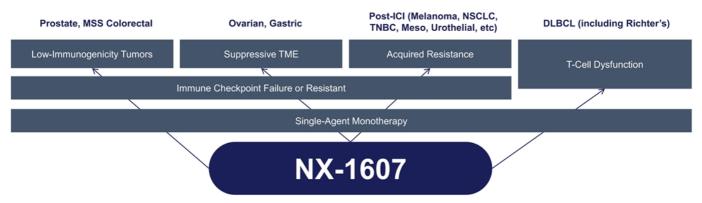
Dose Dependent Increases of CBL-B Proximal Biomarker Correlates with Antitumor Effects of NX-1607

NX-1607-101: Phase 1 first-in-human clinical trial design

Two-Part Phase 1 Monotherapy Trial of NX-1607 in Relapsed or Refractory Tumors

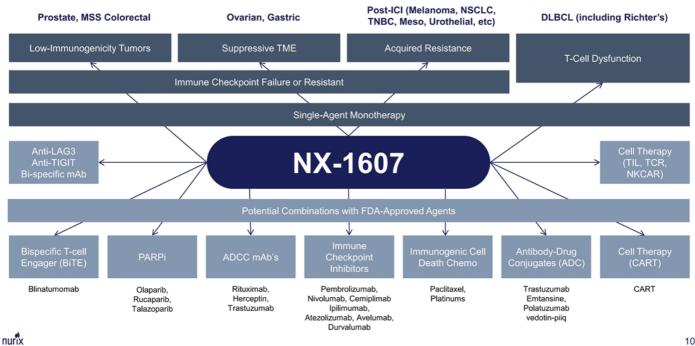
nurix

NX-1607-101 Initial Clinical Experience

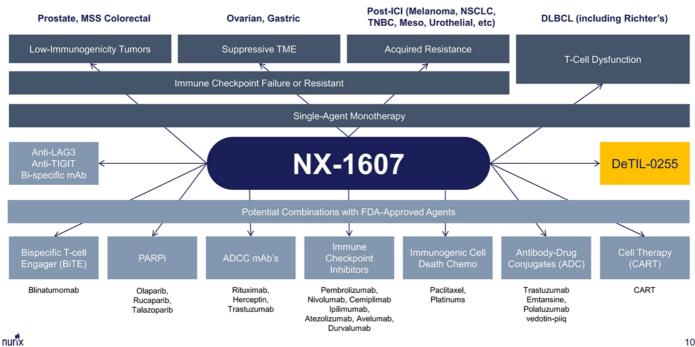

Dose escalation is ongoing

Consistent with preclinical models, we are observing dose-dependent increases of proximal biomarkers

Expect to select Phase 1b dose in H2 2022


Clinical update in mid-2022 will report PK and biomarkers

CBL-B Inhibition Has the Potential To Be the Small Molecule Centerpiece of Immuno-Oncology Therapy

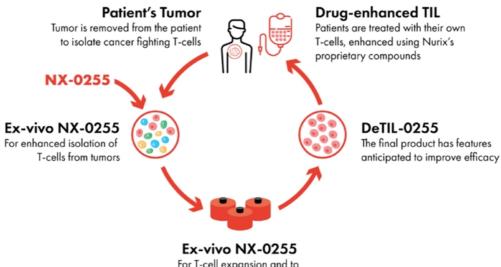


nurix

CBL-B Inhibition Has the Potential To Be the Small Molecule Centerpiece of Immuno-Oncology Therapy

CBL-B Inhibition Has the Potential to Be the Small Molecule Centerpiece of Immuno-Oncology Therapy

DeTIL-0255: Drug Enhanced Cell Therapy in the Clinic


Michael T Lotze, MD, FACS Chief Cellular Therapy Officer Nurix Therapeutics

nurix

Drug-Enhanced Tumor Infiltrating Lymphocytes (DeTIL-0255)

A one-time patient-derived cell therapy

For T-cell expansion and to enhance cellular phenotype

nurix

Tumor Infiltrating Lymphocytes (TIL) – T Cell Therapy with Durable Responses and Potential to Cure Patients with Solid Tumors

Sponsor	TIL for Patient with Metastatic Melanoma	N	ORR	CR%	Median OS
NCI US		43	49%	12%	62
NCI US	Autologous Reactive TIL	51	45%	24%	36.6
NCI US		20	35%	5%	n/a
Sheba Israel	Unselected TIL	57	40%	9%	15.2
Herlev Denmark	Unselected TIL; IL-2 Decrescendo	25	42%	12%	21.8
MD Anderson US	Unselected TIL	74	42%	11%	17.3
lovance US	Unselected TIL	66	36%	3%	17.4

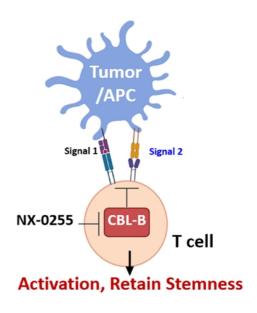
nurix

TIL Administration Has Been Less Effective in the Post-Checkpoint Setting For Patients With Solid Tumors

TIL has the potential to cure patients with solid tumors

Checkpoint inhibitor therapy has reduced the efficacy of subsequent TIL administration

The current TIL regimen is not suitable for most solid tumor patients


TIL cell exhaustion due to continuous antigen exposure and lack of suitable intratumoral dendritic cells (lack of costimulatory molecules) leading to:

- ---> Suboptimal manufacturing success rate
- ----> Poor persistence of T cells
- ---> Unpredictable efficacy and durability

DeTIL-0255: Cell Therapy Product Designed To Overcome Major Limitations of Current TIL Therapy

Desirable phenotype with mixture of increased stem-like T cells *and* potent effector T cells

DeTIL-0255 can integrate effectively in a regimen for patients with virtually any cancer type

nurix

More Effective Expansion of Potent and Stem-like Human DeTIL-0255 Compared with TIL

- · Increased diversity, cell number, and stem-like properties
- · Decreased exhaustion
- Enhanced effector function
- · Increased activation

	-		
Exhaustion	Exhaustion Cytotoxic		un
Marker	% of CD8+	Marker	N
Total PD-1+	t	CD107a+	
Total PD-1+ TIM-3+	ţ	GrB+	
Total PD-1+ LAG-3+	ţ	Perforin+	
		CD107a+ GrB+	
		CD107a+ Perforin	
		GrB+ Perforin	
		GrB+ Perforin CD107A+	

	-	
xic l	Function	Chemokine Sec
	Absolute No. of CD8	Secretion
		RANTES
	T	MCP-1
	t	IL-8
	1	
B+	t	Cytokine Secr
	t	Secretion
'n	†	7 CRS-associated cytokines (IL-2, IL-4, IL-6, IL-9, IL-10,
in	t	IFN-γ, TNF-α)

ine Secretion

ne Secretion

pg/mL

t

t

t

pg/mL

_

Tumor Reactivity		
CD8	% of CD8+	
Total 41BB+	t	

Arrows indicate a statistically significant (P<0.05) change in DeTIL-0255 compared with TIL. CRS. cvtokine release svndrome: DeTIL-0255. drug-enhanced tumor-infiltrating lymphocytes: GrB. granzyme B: IFN-v: Interferon gamma; IL, Interleukin; LAG-3. lymphocyte-activation gene 3:

Whelan et al Poster 98 SITC 2021

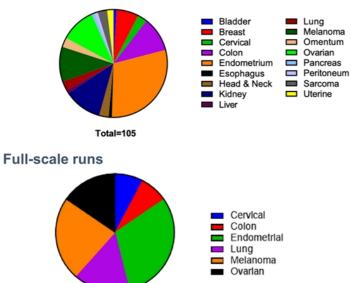
nurix

Tumor-specific

Demonstrates the biologic activity of DeTIL-0255

Reproducible

Developed prospectively


Matrix testing of DeTIL-0255 properties including phenotype and function

Ongoing validation in our clinical trial

nurix

Universal DeTIL-0255 Expansion Allowing Application to Multiple Tumor Types

Pilot Runs

All tumors harbor TIL which can be expanded in pilot and full-scale runs

Pilot scale: 100% of 105 tumors demonstrate T cell expansion

Full-scale: 100% of 13 tumors demonstrate successful DeTIL-0255 production

nurix

Total=13

Introduction of DeTIL-0255 into the Clinic

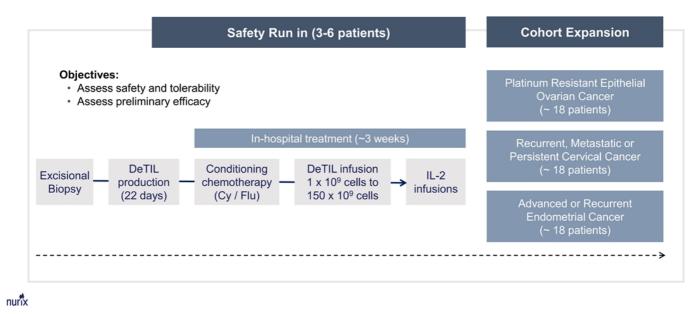
Drug-enhanced TIL product utilizes our proprietary CBL-B inhibitor in manufacturing

Cellular therapy with phenotypic and functional properties associated with superior activity in conventional TIL therapies

100% success rate in pilot and full-scale manufacturing runs

Potency assay designed to meet all regulatory requirements with anticipated validation in ongoing clinical trial

Successfully manufactured DeTIL and initiated treatment of the first patient in our clinical trial; the second patient DeTIL is manufactured and will be administered soon


Robert J Brown, MD EVP, Head of Clinical Development Nurix Therapeutics

nurix

DeTIL-0255-201: Phase 1 First-in-Human Clinical Trial Design

Two-Part Phase 1 Monotherapy Trial of DeTIL-0255 in Relapsed or Refractory Gynecological Cancers

Successful Infusion in First Patient In DeTIL-0255-201

First patient with ovarian cancer has cleared DLT period and awaiting tumor assessment

Successful expansion and desirable phenotype including CD4+ and CD8+ T cells with characteristics of memory and stem-like cells

Successfully manufactured DeTIL-0255 for second patient

nurix

DeTIL-0255 Holds the Promise of Superior Antitumor Activity in the Clinic

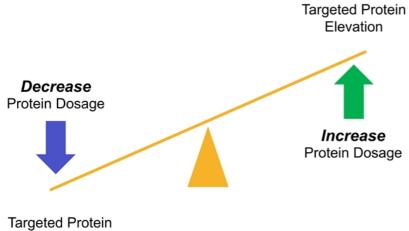
Displays characteristics associated with better outcomes in TIL therapy

- ---> Superior stem-like and memory phenotype
- ---> Enhanced effector function
- ---> Increased persistence and activity

Clinical trial with DeTIL-0255 designed to demonstrate safety and signs of efficacy in patients with gynecologic malignancies

Addition of oral NX-1607 may further improve efficacy and safety, reduce burden of treatment for patients

→ Reduce chemotherapy, replace or reduce use of high-dose IL2



Leader in Targeted Protein Modulation

The Genesis: Powerful DELigase R&D Platform

Gwenn M Hansen, PhD Chief Scientific Officer Nurix Therapeutics

Our Platform Enables Two Complementary Protein Modulation Approaches for Therapeutic Discovery

Degradation

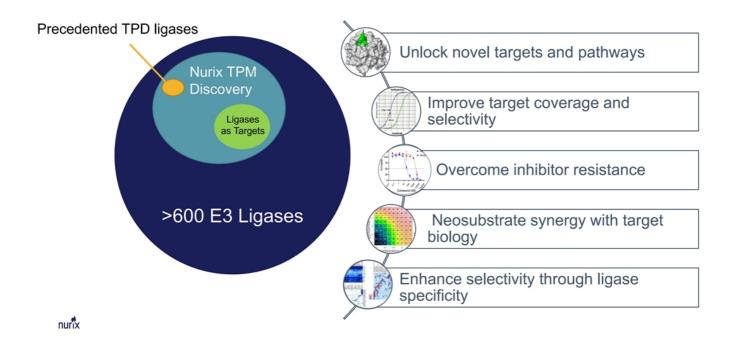
nurix

E3 ligases are the rheostat of the proteome

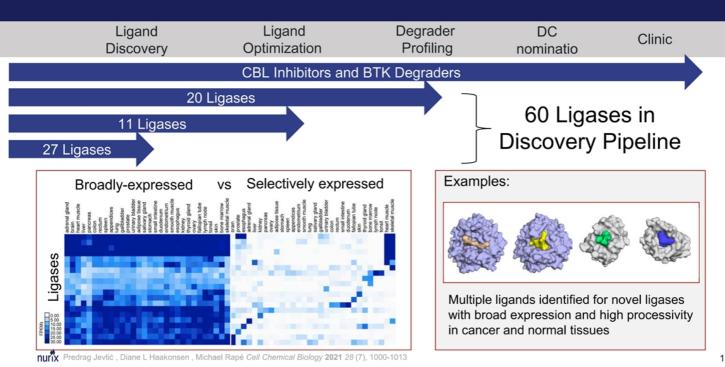
Ligase Modulators can either

Eliminate or Enhance

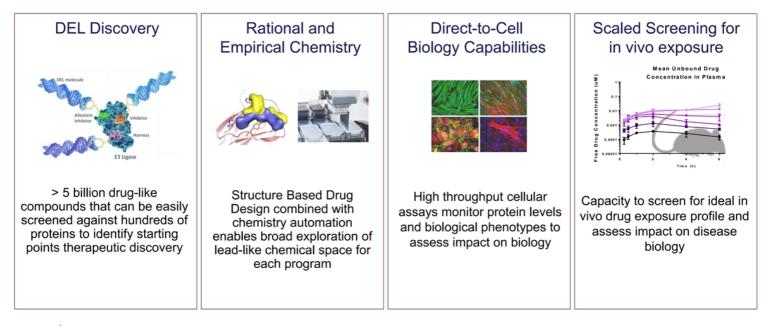
a pathway function


Our CBL and BTK drugs are just the beginning

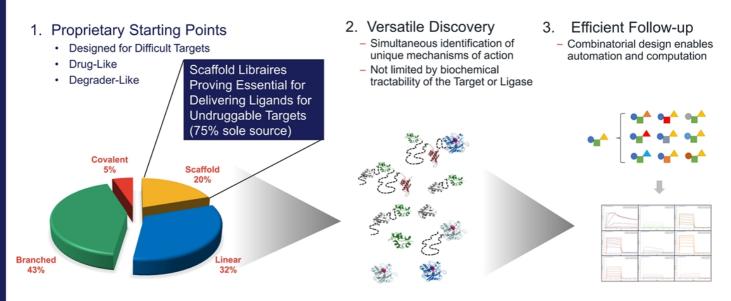
Nurix's platform can address classically druggable and undruggable protein classes and has delivered multiple Protein Modulators


Key Questions About Nurix's Platform

How is Nurix advancing the field of ligase discovery to become the leader in Targeted Protein Modulation?
What is driving the productivity of Nurix's DELigase platform?
Why did Nurix focus on and internalize DEL technology?
How is Nurix innovating to address the challenges of discovery?
What future targets will emerge from Nurix's discovery engine?
How might protein modulation be impactful in treating disease?


Unique TPM Opportunities Can Be Unlocked by Harnessing or Inhibiting Additional E3 Ligases

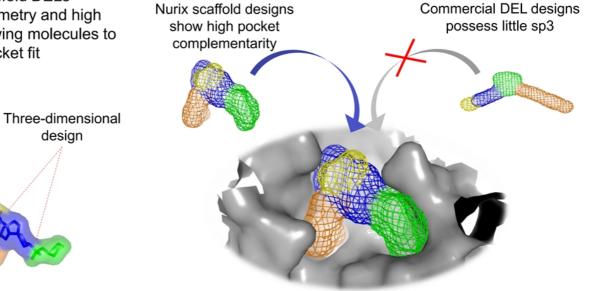
Nurix Has the Most Comprehensive Ligase Discovery Pipeline



Nurix's DELigase Protein Modulation Discovery Platform

nurix

Integrated Discovery Engine To Unlock Relevant Targets

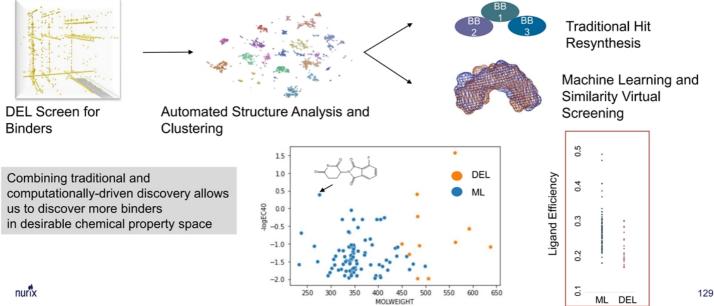


Libraries Contain Significant Chemical Diversity

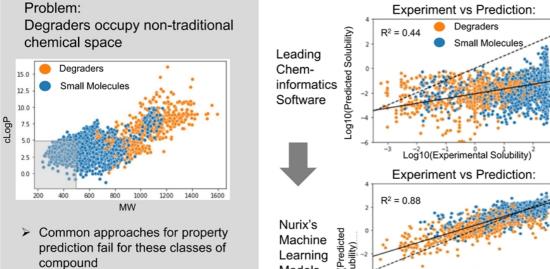
Screening Explores Significant Protein Diversity Lead Identification via Automation

Custom Scaffold-Based DELs Enable Nurix To Identify Binders to Challenging Protein Surfaces

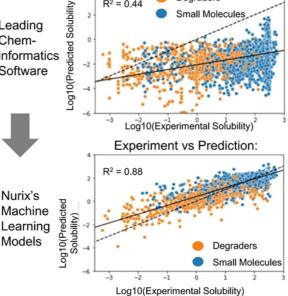
Our proprietary scaffold DELs provide unique geometry and high sp3 character, allowing molecules to achieve optimal pocket fit


Ligand-bound X-ray structure of DEL hit

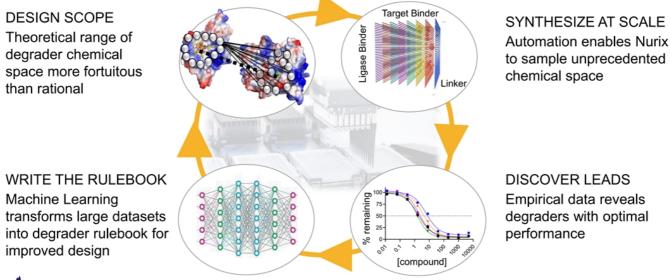
nurix


DNA Barcode

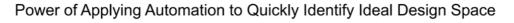
Leveraging Computational Methods To Search Beyond DEL Space to Discover Potent and Diverse CRBN Binders

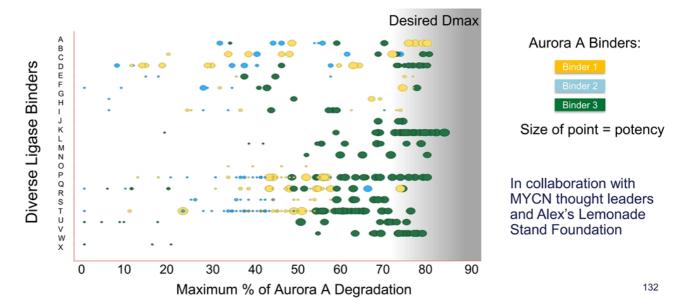

Nurix's Discovery Workflow Allows Access to Chemical Space Beyond Existing Compound Collections

Predicting Solubility in Unique Chemical Space with **Machine Learning**

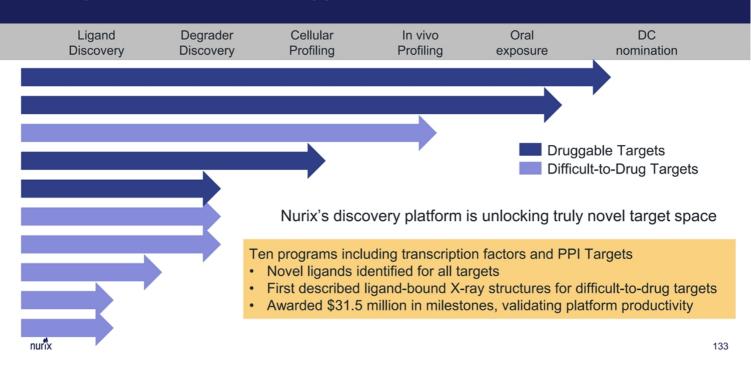

Lack of intuition introduces ≻ inefficiency in Lead Optimization campaigns

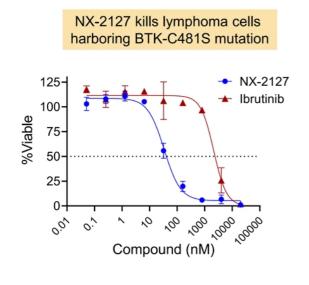
Solution: Application of modern machine learning frameworks improve our understanding of structureto-property relationships, enabling better hit selection and more efficient degrader design and optimization

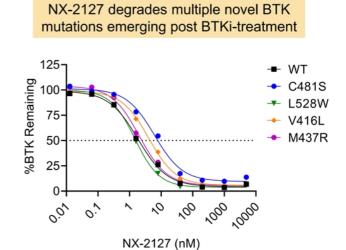

Nurix Is Applying Automation to Better Define the Parameters of Degrader Design to Advance our Programs to the Clinic


Challenge: Identifying and optimizing degraders remains largely an empirical process

nurix


Lead-Like Aurora A Degraders Discovered by Applying Automation to Nurix's Compound Synthesis Workflow




nurix

Collaboration Pipeline Has Demonstrated Value of Platform, Particularly with Targets Considered Undruggable

Nurix Is Confirming the Value of Degraders to Solve Inhibitor Resistance

nurix

Leading the Field of Protein Modulation

Delivering multiple modalities of therapeutics across the broadest target space

Largest pipeline of E3 ligase targets

Best in class for integrating DEL within a discovery engine incorporating automation, machine learning, and structure-based drug design

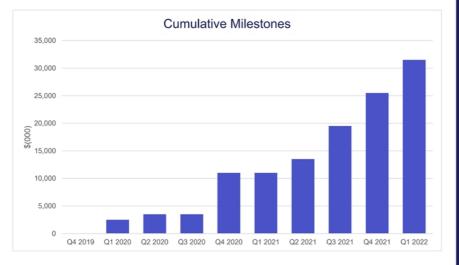
Proven platform performance for unprecedented targets

Our clinical candidates are helping to illustrate the value of degraders to solve inhibitor resistance

Leader in Targeted Protein Modulation

Financial Snapshot & Conclusions

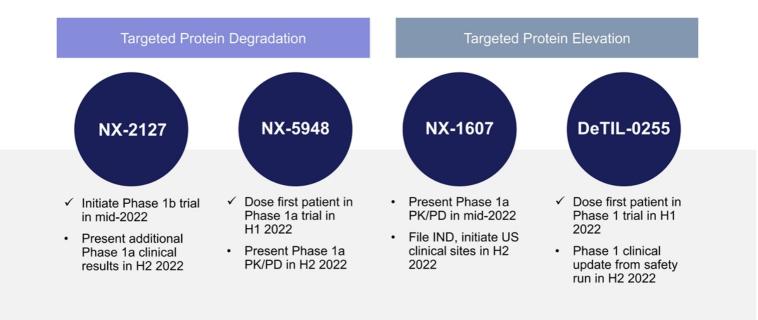
Building From a Position of Strength


R&D Day New York, NY May 26, 2022

Nurix Is in a Strong Financial Position

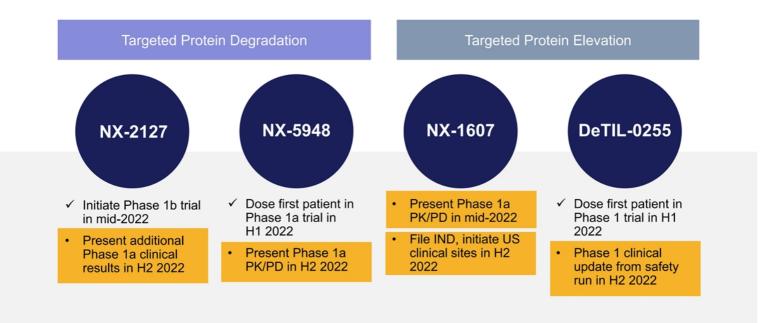
\$386M in cash and investments on February 28, 2022

- Funded through key readouts for all four clinical programs
- Execution on R&D collaborations drives success-based cash flow

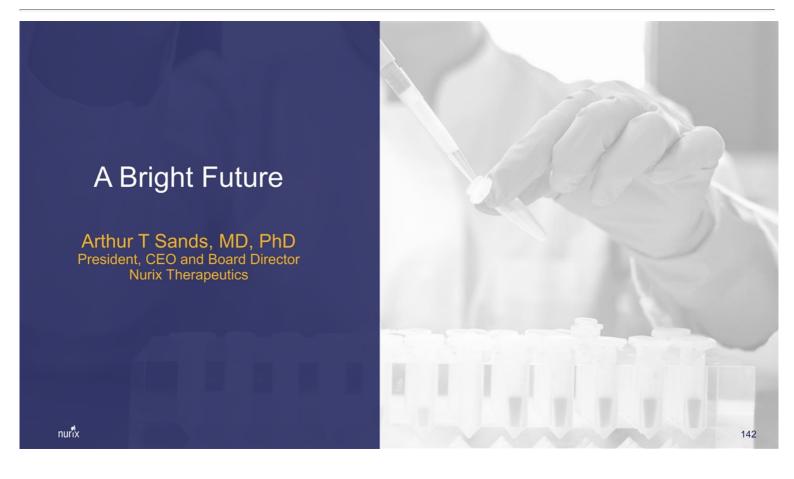

R&D collaboration details:

- Gilead \$55M upfront and \$2.3B in additional payments including early discovery milestones
- Sanofi \$77M upfront and expansion payments and \$2.5B in addition payments including early discovery milestones
- Nurix option for 50/50 U.S. codevelopment for two drug candidates per partner
- Nurix clinical programs excluded

Nurix Continues To Successfully Fund Through Appropriate Mix of Equity and Collaboration Revenue at Every Stage of Growth



Delivering Key Clinical Milestones in 2022



nurt Note: All anticipated timing is based on calendar-year periods

Delivering Key Clinical Milestones in 2022

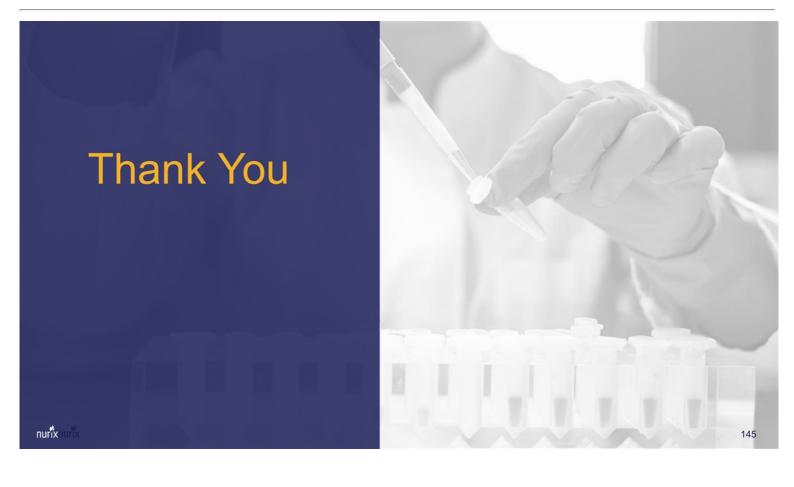
nurix Note: All anticipated timing is based on calendar-year periods

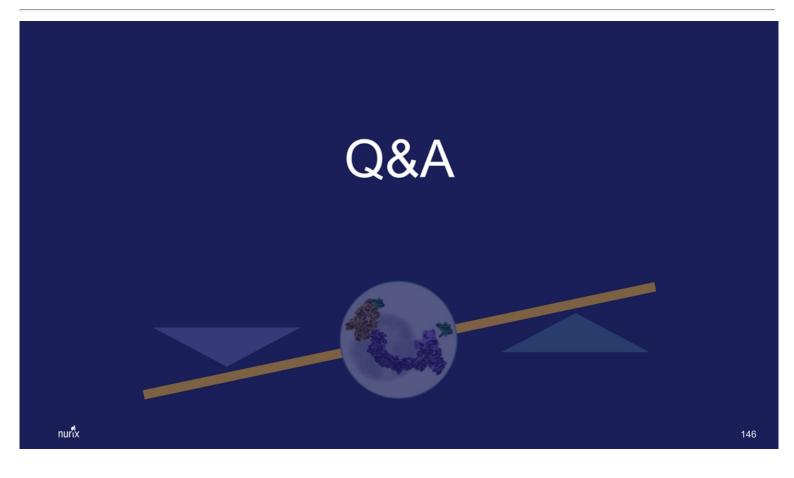
Key Messages for Today

Resistance has met its match with targeted protein modulation We have positive and exciting findings from the first trial of a TPD in a hematologic malignancy

We set the stage for the next breakthrough in immune oncology

with **more to come** from our powerful platform


nurix


What to Expect From Nurix in 2022 and Beyond

Advancing technology and pipeline to remain leaders in Targeted Protein Modulation
Driving toward definitive clinical results
Building commercial-ready organization
Reaping fruits of current partnership programs
Future alliances/partnerships

2022-BEYOND CONQUERING CANCER

Nurix is committed to building a patient-focused, science-driven oncology company powered by our leadership position in Targeted Protein Modulation

Leader in Targeted Protein Modulation

Nurix is committed to building a patient-focused, science-driven oncology company powered by our leadership position in Targeted Protein Modulation

R&D Day New York, NY May 26, 2022

Nurix Therapeutics Announces Positive Dose Finding Data in Chronic Lymphocytic Leukemia and Advances NX-2127 to Next Phase of Clinical Development

Data to be discussed at Nurix R&D Day at 8:00 a.m. ET today May 26

SAN FRANCISCO, May 26, 2022 (GLOBAL NEWSWIRE) — <u>Nurix Therapeutics, Inc.</u> (Nasdaq: NRIX), a biopharmaceutical company developing targeted protein modulation drugs, today announced that it has initiated the first of several potential Phase 1b expansion cohorts in its ongoing Phase 1 trial of NX-2127, an orally administered degrader of Bruton's tyrosine kinase (BTK) with immunomodulatory activity. The first expansion cohorts will focus on patients with chronic lymphocytic leukemia (CLL).

The expansion into CLL is based on recent positive data from Nurix's ongoing Phase 1a dose escalation study of NX-2127, including:

- Meaningful clinical benefit including multiple confirmed responses by IWCLL criteria observed in highly pre-treated relapsed/refractory
 CLL patients with a median of 6 prior therapies
- Clinical responses in patients with BTK mutations that confer resistance to current BTK targeted therapies including both covalent and
 noncovalent BTK inhibitors
- All patients show robust and durable BTK degradation
- All patients show Immunomodulatory activity mediated through the E3 ligase cereblon
- Overall biologic activity in all patients at the 100 mg dose with a favorable safety profile

"Our decision to advance NX-2127 in patients with CLL is based on the promising efficacy, safety, pharmacokinetic, and pharmacodynamic data from the ongoing Phase 1a dose escalation trial. There is a significant unmet need for a therapeutic approach with the potential to address the growing problem of relapse due to the development of BTK inhibitor resistance. We aim to meet that need and are encouraged by the emerging data demonstrating the potential of BTK degradation to treat acquired resistance mutations for both standard of care and newly developed BTK inhibitors," said Robert J. Brown, M.D., executive vice president of clinical development at Nurix. "We look forward to highlighting the biomarker data and preliminary safety and efficacy data that guided our decision to expand the trial for CLL patients at Nurix's R&D Day, scheduled for May 26th in New York City, and will provide a full clinical update at a future medical conference in the second half of 2022."

The Phase 1b expansion cohorts will include up to 40 CLL patients enrolled across multiple clinical sites in the United States. Patients will have received two or more prior regimens including a BTK inhibitor. All patients will be dosed at 100 mg orally once daily. The Phase 1a dose escalation portion of the trial will continue to enroll non-CLL patients at doses ranging from 50mg to 300mg orally once daily.

Nurix R&D Day

Nurix will host a research & development (R&D) day for analysts and investors that will be held today May 26, 2022 from 8:00 a.m. to 11:00 a.m. ET in New York City. The R&D Day will feature a presentation by guest speaker, Anthony Mato, M.D., MSCE, director of the chronic lymphocytic leukemia (CLL) Program at Memorial Sloan Kettering Cancer Center, who will provide a perspective on the clinical experience and unmet need in hematologic malignancies. The event will include presentations from Nurix's management team, who will provide a comprehensive update on Nurix's four clinical programs, DELigase® discovery platform and future development plans.

A live webcast, as well as a replay, will be available in the Investors section of the Nurix website under Events and Presentations.

About NX-2127

Nurix's lead drug candidate from its protein degradation portfolio, NX-2127, is an orally bioavailable degrader of BTK with immunomodulatory activity for the treatment of relapsed or refractory B-cell malignancies. NX-2127 harnesses the normal cellular protein degradation mechanism, the E3 ligasemediated ubiquitin-proteasome pathway, to catalyze degradation of BTK. BTK is an enzyme involved in B-cell development, differentiation and signaling that is critical for proliferation and survival of lymphoma and leukemia cells in many B-cell malignancies. Inhibitors of BTK, such as ibrutinib, are approved for treatment of B-cell cancers, however certain patients cannot tolerate them and in other patients, specific mutations can arise in the BTK protein that confer resistance to these agents, thereby reducing their efficacy. Degradation of BTK has the potential to overcome resistance in patients harboring such mutations in BTK. In addition, NX-2127 catalyzes degradation of transcription factors including lkaros and Aiolos involved in regulating T-cell function, resulting in immunomodulatory activity.

About the Phase 1, Study of NX-2127

The multicenter Phase 1 study is designed to evaluate safety, pharmacokinetics, pharmacodynamics and preliminary clinical activity of orally administered NX-2127 in adult patients with relapsed or refractory B-cell malignancies. The study is being conducted in two parts. The Phase 1a element is a dose-escalation study in which cohorts of patients will receive ascending oral doses of NX-2127 once daily to determine the maximum tolerated dose (MTD) and/or the optimal Phase 1b dose based on safety and tolerability. The second portion of the study, Phase 1b, is a dose expansion phase in which cohorts of patients with specific cancers

will receive NX-2127 to further evaluate the safety and clinical activity of the recommended dose. The study is expected to enroll eligible patients with the following cancers: chronic lymphocytic leukemia (CLL) or small lymphocytic lymphoma (SLL), Waldenstrom macroglobulinemia (WM), mantle cell lymphoma (MCL), marginal zone lymphoma (MZL), follicular lymphoma (FL), and diffuse large B-cell lymphoma (DLECL), who have required and received prior systemic therapies. Additional information on the clinical trial can be accessed at ClinicalTrials.gov (<u>NCT04830137</u>).

About Nurix Therapeutics, Inc.

Nurix Therapeutics is a clinical-stage biopharmaceutical company focused on the discovery, development, and commercialization of small molecule therapies designed to modulate cellular protein levels as a novel treatment approach for cancer and other challenging diseases. Leveraging Nurix's extensive expertise in E3 ligases together with its proprietary DNA-encoded libraries, Nurix has built DELigase, an integrated discovery platform to identify and advance novel drug candidates targeting E3 ligases, a broad class of enzymes that can modulate proteins within the cell. Nurix's drug discovery approach is to either harness or inhibit the natural function of E3 ligases within the ubiquitin proteasome system to selectively decrease or increase cellular protein levels. Nurix's wholly owned pipeline includes targeted protein degraders of Bruton's tyrosine kinase, a B-cell signaling protein, and inhibitors of Casitas B-lineage lymphoma proto-oncogene B, an E3 ligase that regulates T cell activation. Nurix is headquartered in San Francisco, California. For more information, please visit <u>http://www.nurixtx.com</u>.

Forward Looking Statement

This press release contains statements that relate to future events and expectations and as such constitute forward-looking statements within the meaning of the Private Securities Litigation Reform Act of 1995. When or if used in this press release, the words "anticipate," "believe," "could," "estimate," "expect," "intend," "may," "outlook," "plan," "predict," "should," "will," and similar expressions and their variants, as they relate to Nurix, may identify forward-looking statements. All statements that reflect Nurix's expectations, assumptions or projections about the future, other than statements of historical fact, are forward-looking statements, including, without limitation, statements regarding the development and regulatory status of Nurix's drug candidates; the tolerability, safety profile, therapeutic potential and other potential advantages of Nurix's drug candidates; the planned timing and conduct of the clinical trials for Nurix's drug candidates; and the planned timing for the provision of updates and initial findings from Nurix's clinical trials and programs. Forward-looking statements reflect Nurix's current beliefs, expectations, and assumptions. Although Nurix believes the expectations and assumptions attements are not guarantees of future performance and are subject to risks, uncertainties and changes in circumstances that are difficult to predict, which could cause Nurix's actual

activities and results to differ materially from those expressed in any forward-looking statement. Such risks and uncertainties include, but are not limited to: (i) whether Nurix will be able to successfully conduct Phase 1 clinical trials for NX-2127 and its other drug candidates and receive results on its expected timelines, or at all; (ii) whether Nurix will be able to successfully complete clinical development for NX-2127 and its other drug candidates; (iii) the risk that clinical trial data are subject to differing interpretations and assessments by regulatory authorities; (iv) whether regulatory authorities; will be satisfied with the design of and results from Nurix's clinical studies; (v) whether Nurix will be able to obtain regulatory approval of and ultimately commercialize its drug candidates; (vi) whether Nurix will be able to fund development activities and achieve development goals; (vii) the impact of the COVID-19 pandemic on Nurix's operations and clinical trials; and (viii) other risks and uncertainties described under the heading "Risk Factors" in Nurix's Quarterly Report on Form 10-Q for the fiscal period ended February 28, 2022, and other SEC filings. Accordingly, readers are cautioned not to place undue reliance on these forward-looking statements. The statements in this press release speak only as of the date of this press release, even if subsequently made available by Nurix on its website or otherwise. Nurix disclaims any intention or obligation to update publicly any forward-looking statements, whether in response to new information, future events, or otherwise, except as required by applicable law.

Contacts:

Investors: Elizabeth Wolffe, Ph.D. Wheelhouse Life Science Advisors <u>lwolffe@wheelhouselsa.com</u> Media: Brett Whelan LifeSci Communications <u>bwhelan@lifescicomms.com</u>

4